377
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Machine Learning-Based Classification for Rapid Seismic Damage Assessment of Buildings at a Regional Scale

&
Pages 1861-1891 | Received 07 Mar 2023, Accepted 20 Aug 2023, Published online: 04 Sep 2023

References

  • Adhikari, B., S. R. Mishra, and S. Raut. 2016. Rebuilding earthquake struck Nepal through community engagement. Frontiers in Public Health 4:121. doi:10.3389/fpubh.2016.00121.
  • Ahmed, B., S. Mangalathu, and J. S. Jeon. 2022. Seismic damage state predictions of reinforced concrete structures using stacked long short-term memory neural networks. Journal of Building Engineering 46:103737. doi:10.1016/j.jobe.2021.103737.
  • Ahmed, A., and K. Shahzada. 2020. Structures, Vol. 27, 639–49. doi:10.1016/j.istruc.2020.06.007.
  • Applied Technology Council. 1985. Earthquake damage evaluation data for California (ATC-13). Redwood, CA: Applied Technology Council.
  • Applied Technology Council. 1995. ATC-20 procedures for post-earthquake building safety evaluation procedures. Redwood, CA: Applied Technology Council.
  • Arslan, M. H. 2010. An evaluation of effective design parameters on earthquake performance of RC buildings using neural networks. Engineering Structures 32 (7):1888–98. doi:10.1016/j.engstruct.2010.03.010.
  • Arslan, M. H., M. Ceylan, and T. Koyuncu. 2015. Determining earthquake performances of existing reinforced concrete buildings by using ANN. International Journal of Civil and Environmental Engineering 9 (8):1097–101.
  • Baker, J. W., and C. Allin Cornell. 2005. A vector‐valued ground motion intensity measure consisting of spectral acceleration and epsilon. Earthquake Engineering & Structural Dynamics 34 (10):1193–217. doi:10.1002/eqe.474.
  • Bazzurro, P., C. A. Cornell, C. Menun, and M. Motahari. 2004. Guidelines for seismic assessment of damaged buildings. Proceedings of the 13th world conference on earthquake engineering, Vancouver, Canada, August.
  • Bennett, J. 2010. OpenStreetMap. 1st ed. Birmingham: Packt Publishing.
  • Bhatta, S., and J. Dang. 2023. Seismic damage prediction of RC buildings using machine learning. Earthquake Engineering and Structural Dynamics 52:3504–3527. doi:10.1002/eqe.3907.
  • Boağzi i University. 2022. Regional earthquake-tsunami monitoring center (RETMC). Accessed April 4, 2022. http://www.koeri.boun.edu.tr/sismo/2/en/.
  • Bommer, J. J., and H. Crowley. 2006. The influence of ground-motion variability in earthquake loss modelling. Bulletin of Earthquake Engineering 4 (3):231–48. doi:10.1007/s10518-006-9008-z.
  • Breiman, L. 1996. Bagging predictors. Machine Learning 24 (2):123–40. doi:10.1007/BF00058655.
  • Breiman, L. 2001. Random forests. Machine Learning 45 (1):5–32. doi:10.1023/A:1010933404324.
  • Burton, H. V., S. Sreekumar, M. Sharma, and H. Sun. 2017. Estimating aftershock collapse vulnerability using mainshock intensity, structural response and physical damage indicators. Structural Safety 68:85–96. doi:10.1016/j.strusafe.2017.05.009.
  • Calvi, G. M., R. Pinho, G. Magenes, J. J. Bommer, L. F. Restrepo-Vélez, and H. Crowley. 2006. Development of seismic vulnerability assessment methodologies over the past 30 years. ISET Journal of Earthquake Technology 43 (3):75–104.
  • Castellazzi, G., C. Gentilini, and L. Nobile. 2013. Seismic vulnerability assessment of a historical church: Limit analysis and nonlinear finite element analysis. Advances in Civil Engineering 2013:1–12. doi:10.1155/2013/517454.
  • Castori, G., A. Borri, A. De Maria, M. Corradi, and R. Sisti. 2017. Seismic vulnerability assessment of a monumental masonry building. Engineering Structures 136:454–65. doi:10.1016/j.engstruct.2017.01.035.
  • Ceroni, F., M. Pecce, S. Sica, and A. Garofano. 2012. Assessment of seismic vulnerability of a historical masonry building. Buildings 2 (3):332–58. doi:10.3390/buildings2030332.
  • Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. 2002. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16:321–57. doi:10.1613/jair.953.
  • Chen, Y., G. Kai, Z. Suling, and H. Zhibin. 2015. Status quo of China earthquake networks and analyses on its early warning capacity. Acta Seismologica Sinica 37 (3):508–15.
  • Coskun, O., A. Aldemir, and M. Sahmaran. 2020. Rapid screening method for the determination of seismic vulnerability assessment of RC building stocks. Bulletin of Earthquake Engineering 18 (4):1401–16. doi:10.1007/s10518-019-00751-9.
  • D’Ayala, D. 2013. Assessing the seismic vulnerability of masonry buildings. In Handbook of seismic risk analysis and management of civil infrastructure systems, 334–65. Woodhead publishing. doi:10.1533/9780857098986.3.334.
  • De Lautour, O. R., and P. Omenzetter. 2009. Prediction of seismic-induced structural damage using artificial neural networks. Engineering Structures 31 (2):600–06. doi:10.1016/j.engstruct.2008.11.010.
  • Del Gaudio, C., M. Di Ludovico, M. Polese, G. Manfredi, A. Prota, P. Ricci, and G. M. Verderame. 2020. Seismic fragility for Italian RC buildings based on damage data of the last 50 years. Bulletin of Earthquake Engineering 18 (5):2023–59. doi:10.1007/s10518-019-00762-6.
  • Del Gaudio, C., P. Ricci, G. M. Verderame, and G. Manfredi. 2017. Urban-scale seismic fragility assessment of RC buildings subjected to L’Aquila earthquake. Soil Dynamics and Earthquake Engineering 96:49–63. doi:10.1016/j.soildyn.2017.02.003.
  • De Luca, F., G. M. Verderame, and G. Manfredi. 2015. Analytical versus observational fragilities: The case of Pettino (L’aquila) damage data database. Bulletin of Earthquake Engineering 13 (4):1161–81. doi:10.1007/s10518-014-9658-1.
  • Demertzis, K., K. Kostinakis, K. Morfidis, and L. Iliadis. 2022. A comparative evaluation of machine learning algorithms for the prediction of R/C buildings’ seismic damage. arXiv preprint arXiv:2203.13449.
  • Domaneschi, M., A. Z. Noori, M. V. Pietropinto, and G. P. Cimellaro. 2021. Seismic vulnerability assessment of existing school buildings. Computers & Structures 248:106522. doi:10.1016/j.compstruc.2021.106522.
  • Estabrooks, A., and N. Japkowicz. 2001. A mixture-of-experts framework for learning from imbalanced data sets. Advances in Intelligent Data Analysis: 4th International Conference, IDA 2001 Cascais, Portugal, September 13–15, 2001 Proceedings, 34-43. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • European Plate Observing System. European Mediterranean Seismological Center (EMSC). Accessed April 4, 2022. https://www.seismicportal.eu/.
  • Fawagreh, K., M. M. Gaber, and E. Elyan. 2014. Random forests: From early developments to recent advancements. Systems Science and Control Engineering: An Open Access Journal 2 (1):602–09. doi:10.1080/21642583.2014.956265.
  • Federal Emergency Management Agency. 2015. Rapid visual screening of buildings for potential seismic hazards: A handbook. 3rd ed. Washington, DC, USA: FEMA P-154; Homeland Security Department.
  • Friedman, J., T. Hastie, and R. Tibshirani. 2001. The elements of statistical learning (Springer series in statistics), Vol. 1. Berlin: Springer. doi:10.1007/978-0-387-21606-5_1.
  • Gautam, D., R. Adhikari, and R. Rupakhety. 2021. Seismic fragility of structural and non-structural elements of Nepali RC buildings. Engineering Structures 232:111879. doi:10.1016/j.engstruct.2021.111879.
  • Gehl, P., D. M. Seyedi, and J. Douglas. 2013. Vector-valued fragility functions for seismic risk evaluation. Bulletin of Earthquake Engineering 11 (2):365–84. doi:10.1007/s10518-012-9402-7.
  • Ghimire, S., P. Guéguen, S. Giffard-Roisin, and D. Schorlemmer. 2022. Testing machine learning models for seismic damage prediction at a regional scale using building-damage dataset compiled after the 2015 Gorkha Nepal earthquake. Earthquake Spectra 38 (4):2970–93. doi:10.1177/87552930221106495.
  • Goda, K., T. Kiyota, R. M. Pokhrel, G. Chiaro, T. Katagiri, K. Sharma, and S. Wilkinson. 2015. The 2015 Gorkha Nepal earthquake: Insights from earthquake damage survey. Frontiers in Built Environment 1:8. doi:10.3389/fbuil.2015.00008.
  • Goretti, A., and G. Di Pasquale. 2002. An overview of post-earthquake damage assessment in Italy. Eeri invitational workshop. An action plan to develop earthquake damage and loss data protocols, California.
  • Grillanda, N., M. Valente, G. Milani, A. Chiozzi, and A. Tralli. 2020. Advanced numerical strategies for seismic assessment of historical masonry aggregates. Engineering Structures 212:110441. doi:10.1016/j.engstruct.2020.110441.
  • Grünthal, G. 1998. European macroseismic scale 1998 EMS-98.
  • Han, S. W., W. T. Kim, and D. A. Foutch. 2007. Tensile strength equation for HSS bracing members having slotted end connections. Earthquake Engineering & Structural Dynamics 36 (8):995–1008. doi:10.1002/eqe.665.
  • Hansapinyo, C., P. Latcharote, and S. Limkatanyu. 2020. Seismic building damage prediction from GIS-based building data using artificial intelligence system. Frontiers in Built Environment 6:576919. doi:10.3389/fbuil.2020.576919.
  • Harirchian, E., S. E. A. Hosseini, K. Jadhav, V. Kumari, S. Rasulzade, E. Işık, M. Wasif, and T. Lahmer. 2021. A review on application of soft computing techniques for the rapid visual safety evaluation and damage classification of existing buildings. Journal of Building Engineering 43:102536. doi:10.1016/j.jobe.2021.102536.
  • Harirchian, E., V. Kumari, K. Jadhav, R. Raj Das, S. Rasulzade, and T. Lahmer. 2020a. A machine learning framework for assessing seismic hazard safety of reinforced concrete buildings. Applied Sciences 10 (20):7153. doi:10.3390/app10207153.
  • Harirchian, E., T. Lahmer, S. Buddhiraju, K. Mohammad, and A. Mosavi. 2020b. Earthquake safety assessment of buildings through rapid visual screening. Buildings 10 (3):51. doi:10.3390/buildings10030051.
  • Harirchian, E., T. Lahmer, V. Kumari, and K. Jadhav. 2020c. Application of support vector machine modeling for the rapid seismic hazard safety evaluation of existing buildings. Energies 13 (13):3340. doi:10.3390/en13133340.
  • Hoskere, V., Y. Narazaki, T. A. Hoang, and B. F. Spencer Jr. 2018. Towards automated post-earthquake inspections with deep learning-based condition-aware models. arXiv preprint arXiv:1809.09195.
  • Hwang, S. H., S. Mangalathu, J. Shin, and J. S. Jeon. 2021. Machine learning-based approaches for seismic demand and collapse of ductile reinforced concrete building frames. Journal of Building Engineering 34:101905. doi:10.1016/j.jobe.2020.101905.
  • Kegyes-Brassai, O. R. S. O. L. Y. A. 2019. Vulnerability assessment of buildings based on rapid visual screening and pushover: Case study of gyor, hungary, Vol. 185, 63–74. Southampton, UK: WIT Press.
  • Kermani, E., Y. Jafarian, and M. H. Baziar. 2009. New predictive models for the vmax/amax ratio of strong ground motions using genetic programming.
  • Kiani, J., C. Camp, and S. Pezeshk. 2019. On the application of machine learning techniques to derive seismic fragility curves. Computers & Structures 218:108–22. doi:10.1016/j.compstruc.2019.03.004.
  • Kia, A., and S. Şensoy. 2014. Assessment the effective ground motion parameters on seismic performance of R/C buildings using artificial neural network.
  • Luca, F., and G. Verderame. 2015. Seismic vulnerability assessment: Reinforced concrete structures, 1–31. Berlin/Heidelberg, Germany: Springer. doi:10.1007/978-3-642-36197-5_252-1.
  • Lu, X., V. Plevris, G. Tsiatas, and D. De Domenico. 2022. Editorial: Artificial intelligence-powered methodologies and applications in earthquake and structural engineering. Frontiers in Built Environment 8. doi:10.3389/fbuil.2022.876077.
  • Mangalathu Sivasubramanian Pillai, S. 2017. Performance based grouping and fragility analysis of box-girder bridges in California. Doctoral dissertation, Georgia Institute of Technology.
  • Mangalathu, S., H. Sun, C. C. Nweke, Z. Yi, and H. V. Burton. 2020. Classifying earthquake damage to buildings using machine learning. Earthquake Spectra 36 (1):183–208. doi:10.1177/8755293019878137.
  • Meskouris, K., W. B. Kratzig, and U. Hanskotter. 1992. Seismic motion damage potential for R/C wall-stiffened buildings. Nonlinear seismic analysis and design of reinforced concrete buildings, 125–36. Oxford: Elsevier Applied Science.
  • Molas, G. L., and F. Yamazaki. 1995. Neural networks for quick earthquake damage estimation. Earthquake Engineering & Structural Dynamics 24 (4):505–16. doi:10.1002/eqe.4290240404.
  • Morfidis, K., and K. Kostinakis. 2017. Seismic parameters’ combinations for the optimum prediction of the damage state of R/C buildings using neural networks. Advances in Engineering Software 106:1–16. doi:10.1016/j.advengsoft.2017.01.001.
  • Morfidis, K., and K. Kostinakis. 2018. Approaches to the rapid seismic damage prediction of r/c buildings using artificial neural networks. Engineering Structures 165:120–41. doi:10.1016/j.engstruct.2018.03.028.
  • National Planning Commission. 2022. Nepal earthquake: Open data portal. Accessed August 11, 2022. http://www.eq2015.npc.gov.np/.
  • NIED. The NIED strong-motion seismograph networks. Accessed March 1, 2022. http://www.kyoshin.bosai.go.jp.
  • Ningthoujam, M. C., and R. P. Nanda. 2018. Rapid visual screening procedure of existing building based on statistical analysis. International Journal of Disaster Risk Reduction 28:720–30. doi:10.1016/j.ijdrr.2018.01.033.
  • OECD. 2018. Financial management of earthquake risk. Accessed June 10, 2022. http://www.oecd.org/finance/insurance/Financial-management-of-earthquake-risk.pdf.
  • Okamura, M., N. P. Bhandary, S. Mori, N. Marasini, and H. Hazarika. 2015. Report on a reconnaissance survey of damage in Kathmandu caused by the 2015 Gorkha Nepal earthquake. Soils and Foundations 55 (5):1015–29. doi:10.1016/j.sandf.2015.09.005.
  • Porter, K. 2015. A beginner’s guide to fragility, vulnerability, and risk. Encyclopedia of Earthquake Engineering 139: 235–60.
  • Pothon, A., P. Gueguen, S. Buisine, and P. Y. Bard. 2020. Comparing probabilistic seismic hazard maps with ShakeMap footprints for Indonesia. Seismological Research Letters 91 (2A):847–58. doi:10.1785/0220190171.
  • Preciado, A. 2015. Seismic vulnerability and failure modes simulation of ancient masonry towers by validated virtual finite element models. Engineering Failure Analysis 57:72–87. doi:10.1016/j.engfailanal.2015.07.030.
  • Rai, D. C. 2005. Seismic evaluation and strengthening of existing buildings, 1–120. Gandhinagar, India: IIT Kanpur and Gujarat State Disaster Mitigation Authority.
  • Riedel, I., and P. Guéguen. 2018. Modeling of damage-related earthquake losses in a moderate seismic-prone country and cost–benefit evaluation of retrofit investments: Application to France. Natural Hazards 90 (2):639–62. doi:10.1007/s11069-017-3061-6.
  • Riedel, I., P. Guéguen, M. Dalla Mura, E. Pathier, T. Leduc, and J. Chanussot. 2015. Seismic vulnerability assessment of urban environments in moderate-to-low seismic hazard regions using association rule learning and support vector machine methods. Natural Hazards 76 (2):1111–41. doi:10.1007/s11069-014-1538-0.
  • Roeslin, S., Q. Ma, H. Juárez-Garcia, A. Gómez-Bernal, J. Wicker, and L. Wotherspoon. 2020. A machine learning damage prediction model for the 2017 Puebla-Morelos, Mexico, earthquake. Earthquake Spectra 36 (2_suppl):314–39. doi:10.1177/8755293020936714.
  • Rofooei, F. R., A. Kaveh, and F. M. Farahani. 2011. Estimating the vulnerability of the concrete moment resisting frame structures using artificial neural networks. International Journal of Optimization in Civil Engineering 1 (3):433–48.
  • Rossetto, T., and A. Elnashai. 2003. Derivation of vulnerability functions for European-type RC structures based on observational data. Engineering Structures 25 (10):1241–63. doi:10.1016/S0141-0296(03)00060-9.
  • Rota, M., A. Penna, and G. Magenes. 2010. A methodology for deriving analytical fragility curves for masonry buildings based on stochastic nonlinear analyses. Engineering Structures 32 (5):1312–23. doi:10.1016/j.engstruct.2010.01.009.
  • Sajan, K. C., A. Bhusal, D. Gautam, and R. Rupakhety. 2023. Earthquake damage and rehabilitation intervention prediction using machine learning. Engineering Failure Analysis 144:106949. doi:10.1016/j.engfailanal.2022.106949.
  • Schorlemmer, D., T. Beutin, N. Hirata, K. Hao, M. Wyss, F. Cotton, and K. Prehn. 2017. Global dynamic exposure and the OpenBuildingMap-communicating risk and involving communities, Geophysical Research Abstracts 19:7060.
  • Silva, V., S. Akkar, J. Baker, P. Bazzurro, J. M. Castro, H. Crowley, M. Dolsek, C. Galasso, S. Lagomarsino, R. Monteiro, et al. 2019. Current challenges and future trends in analytical fragility and vulnerability modeling. Earthquake Spectra 35 (4):1927–52. doi:10.1193/042418EQS101O.
  • Stojadinović, Z., M. Kovačević, D. Marinković, and B. Stojadinović. 2022. Rapid earthquake loss assessment based on machine learning and representative sampling. Earthquake Spectra 38 (1):152–77. doi:10.1177/87552930211042393.
  • Sun, H., H. V. Burton, and H. Huang. 2021. Machine learning applications for building structural design and performance assessment: State-of-the-art review. Journal of Building Engineering 33:101816. doi:10.1016/j.jobe.2020.101816.
  • Sun, H., H. Burton, and J. Wallace. 2019. Reconstructing seismic response demands across multiple tall buildings using kernel‐based machine learning methods. Structural Control and Health Monitoring 26 (7):e2359. doi:10.1002/stc.2359.
  • Tang, Q., J. Dang, Y. Cui, X. Wang, and J. Jia. 2022. Machine learning-based fast seismic risk assessment of building structures. Journal of Earthquake Engineering 26 (15):8041–62. doi:10.1080/13632469.2021.1987354.
  • Trifunac, M. D., and M. I. Todorovska. 1997. Northridge, California, earthquake of 1994: Density of red-tagged buildings versus peak horizontal velocity and intensity of shaking. Soil Dynamics and Earthquake Engineering 16 (3):209–22. doi:10.1016/S0267-7261(96)00043-7.
  • United State Geological Survey. Accessed August 11, 2022. https://earthquake.usgs.gov/earthquakes/eventpage/us20002926/shakemap/intensity.
  • United States Geological Survey (USGS). Center for Engineering Strong Motion Data (CESMD). Accessed April 3, 2022. https://strongmotioncenter.org/
  • Vafaei, M., A. B. Adnan, and A. B. Abd Rahman. 2013. Real-time seismic damage detection of concrete shear walls using artificial neural networks. Journal of Earthquake Engineering 17 (1):137–54. doi:10.1080/13632469.2012.713559.
  • Vallejo, C. B. 2010. Rapid visual screening of buildings in the city of Manila, Philippines. 5th Civil Engineering Conference in the Asian Region and Australasian Structural Engineering Conference 2010, 513–18. Sydney, NSW: Engineers Australia, January.
  • Xie, Y., M. Ebad Sichani, J. E. Padgett, and R. DesRoches. 2020. The promise of implementing machine learning in earthquake engineering: A state-of-the-art review. Earthquake Spectra 36 (4):1769–801. doi:10.1177/8755293020919419.
  • Xiong, C., X. Lu, J. Huang, and H. Guan. 2019. Multi-LOD seismic-damage simulation of urban buildings and case study in Beijing CBD. Bulletin of Earthquake Engineering 17 (4):2037–57. doi:10.1007/s10518-018-00522-y.
  • Xu, Y., X. Lu, Y. Tian, and Y. Huang. 2022. Real-time seismic damage prediction and comparison of various ground motion intensity measures based on machine learning. Journal of Earthquake Engineering 26 (8):4259–79. doi:10.1080/13632469.2020.1826371.
  • Xu, Z., Y. Wu, M. Z. Qi, M. Zheng, C. Xiong, and X. Lu. 2020. Prediction of structural type for city-scale seismic damage simulation based on machine learning. Applied Sciences 10 (5):1795. doi:10.3390/app10051795.
  • Zhang, Y., H. V. Burton, H. Sun, and M. Shokrabadi. 2018. A machine learning framework for assessing post-earthquake structural safety. Structural Safety 72:1–16. doi:10.1016/j.strusafe.2017.12.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.