140
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Applying ANOVA and DOE to study the effect of manganese on the hardness and wear rate of artificially aged Al-4.5wt%Cu alloys

& ORCID Icon
Pages 56-63 | Received 31 Jan 2017, Accepted 04 Aug 2017, Published online: 16 Aug 2017

References

  • Kaufman JG. Properties of aluminum alloys: tensile, creep, and fatigue data at high and low temperatures. Materials Park (OH): ASM International; 1999.
  • Campbell FC. Elements of metallurgy and engineering alloys. Materials Park (OH): ASM International; 2008.
  • Takeda M, Komatsu A, Ohta M, et al. The influence of mn on precipitation behavior in Al–Cu. Scr Mater. 2000;39(9):1295–1300.
  • Hirano K. Field Ion microscope studies on guinier-preston zones in Aluminium alloys. Cryst Res Technol. 1984;19(10):1273–1278.10.1002/(ISSN)1521-4079
  • Rioja RJ, Laughlin DE. The early stages of GP zone formation in naturally aged Ai-4 wt pct cu alloys. Metall Trans A. 1977 Aug;8(8):1257–1261.
  • Nam SW, Lee DH. The effect of Mn on the mechanical behavior of AI alloys. Metals Mater. 2000;6(1):13–16.10.1007/BF03026339
  • Asgar-Khan M, Medraj M. Thermodynamic description of the Mg–Mn, Al–Mn and Mg–Al–Mn systems using the modified quasichemical model for the liquid phases. Mater Trans. 2009;50(5):1113–1122.10.2320/matertrans.MRA2008484
  • Desai PD. Thermodynamic properties of selected binary aluminum alloy systems. J Phys Chem Ref Data. 1987;16(1):109–124.10.1063/1.555788
  • Shukla A, Pelton AD. Thermodynamic assessment of the Al–Mn and Mg–Al–Mn systems. J Phase Equilib Diffus. 2009;30(1):28–39.10.1007/s11669-008-9426-5
  • Belov NA, Alabin AN, Matveeva IA. Optimization of phase composition of Al–Cu–Mn–Zr–Sc alloys for rolled products without requirement for solution treatment and quenching. J Alloys Compd. 2014;583:206–213.10.1016/j.jallcom.2013.08.202
  • Lodgaard L, Ryum N. Precipitation of dispersoids containing Mn and/or Cr in Al–Mg–Si alloys. Mater Sci Eng A. 2000;283(1–2):144–152.10.1016/S0921-5093(00)00734-6
  • Ghosh KS, Hilal M, Bose S. Corrosion behavior of 2024 Al–Cu–Mg alloy of various tempers. Trans Nonferrous Met Soc China. 2013;23(11):3215–3227.10.1016/S1003-6326(13)62856-3
  • Rana RS, Purohit R, Das S. Reviews on the influences of alloying elements on the microstructure and mechanical properties of aluminum alloys and aluminum alloy composites. Int J Sci Res Publ. 2012;2(6):1–7.
  • Kalhapure MG, Dighe PM. Impact of silicon content on mechanical properties of aluminum alloys. Int J Sci Res. 2015;4(6):2013–2015.
  • Zhong H, Rometsch PA, Cao L, et al. The influence of Mg/Si ratio and Cu content on the stretch formability of 6xxx aluminium alloys. Mater Sci Eng A. 2016;651:688–697.10.1016/j.msea.2015.11.016
  • Moustafa MA, Samuel FH, Doty HW, et al. Effect of Mg and Cu additions on the microstructural characteristics and tensile properties of Sr-modified Al–Si eutectic alloys. Int J Cast Met Res. 2002 Jan;14(4):235–253.10.1080/13640461.2002.11819442
  • Yan L, Zhangn Y, Li X, et al. Effect of Zn addition on microstructure and mechanical properties of an Al–Mg–Si alloy. Prog Nat Sci Mater Int. 2014;24(2):97–100.10.1016/j.pnsc.2014.03.003
  • Tocci M, Donnini R, Angella G, et al. Materials characterization effect of Cr and Mn addition and heat treatment on AlSi3Mg casting alloy. Mater Charact. 2017;123:75–82.10.1016/j.matchar.2016.11.022
  • Kim JH, Nam DH, Lee HD, et al. Effects of titanium and boron additions with cooling rates on solidi fi cation behavior in aluminum alloys for automotive applications. Mater Trans. 2016;57(2):193–200.
  • Miyake Y, Sato Y, Teranishi R, et al. Effect of heat treatments on the microstructure and formability of Al–Mg–Mn–Sc–Zr alloy. Micron. 2017 Jul;101:151–155.10.1016/j.micron.2017.07.003
  • Fan Y, Makhlouf MM. Stabilizing the strengthening precipitates in aluminum-manganese alloys by the addition of tungsten. Mater Sci Eng A. 2017 Aug;691:1–7.
  • Oghenekowho PA. Effect of nickel and molybdenum on the mechanical properties of aluminium- 4% copper alloy. Int J Eng Res Technol. 2016;5(4):740–748.
  • Fortini A, Merlin M, Fabbri E, et al. On the influence of Mn and Mg additions on tensile properties, microstructure and quality index of the A356 aluminum foundry alloy. Proc Struct Integr. 2016;2:2238–2245.10.1016/j.prostr.2016.06.280
  • Stan-Głowińska K, Lityńska-Dobrzyńska L, Rogal Ł. Influence of Fe addition on the formation of a quasicrystalline phase in bulk Al-rich Al Mn base alloys. Mater Charact. 2017;128 Feb:203–208.10.1016/j.matchar.2017.04.006
  • Möller H, Masuku EP, Curle UA, et al. The influence of Mn on the tensile properties of SSM-HPDC Al–Cu–Mg–Ag alloy A201. J South African Inst Min Metall. 2011;111(3):167–171.
  • Kanno M, Suzuki H, Kanoh O. Effects of manganese addition on aging behavior of Al-4%Cu alloy. J Jpn Inst Light Met. 2015;30(12):684–693.
  • Hwang JY, Doty HW, Kaufman MJ. The effects of Mn additions on the microstructure and mechanical properties of Al–Si–Cu casting alloys. Mater Sci Eng A. 2008;488(1–2):496–504.10.1016/j.msea.2007.12.026
  • Chung DS, Jea CW, Yoon JH, et al. Effect of Mn Addition on the Mechanical Properties in Al–Cu–Li–Mg–Ag–Zr Alloys. Mater Sci Forum. 2007;539–543:481–486.10.4028/www.scientific.net/MSF.539-543
  • Toleuova AR, Belov NA, Smagulov DU, et al. Quantitative analysis of the Al–Cu–Mn–Zr phase diagram as a base for deformable refractory aluminum alloys. Met Sci Heat Treat. 2012;54(7–8):402–406.
  • Chen Z, Chen P, Li S. Effect of Ce addition on microstructure of Al20Cu2Mn3 twin phase in an Al–Cu–Mn casting alloy. Mater Sci Eng A. 2012;532:606–609.10.1016/j.msea.2011.11.025
  • Shehadeh LM, Jalham IS. The effect of adding different percentages of manganese (Mn) and copper (Cu) on the mechanical behavior of aluminum. Jordan J Mech Indust. 2016;10(1):19–26.
  • Chen Z, Fan Q, Zhao K. Microstructure and microhardness of nanostructured Al−4.6Cu−Mn alloy ribbons. Int J Miner Metall Mater. 2015 Aug;22(8):860–867.10.1007/s12613-015-1143-6
  • Hassan AM, Bataineh OM, Abed KM. The effect of time and temperature on the precipitation behavior and hardness of Al-4 wt%Cu alloy using design of experiments. J Mater Process Technol. 2008;204(1–3):343–349.10.1016/j.jmatprotec.2007.11.047
  • Montgomery DC, Runger GC. Applied statistics and probability for engineers. 3rd ed. New York (NY): John Wiley & Sons Inc.; 2003.
  • Bataineh O, Dalalah D. Strategy for optimising cutting parameters in the dry turning of 6061-T6 aluminium alloy based on design of experiments and the generalised pattern search algorithm. Int J Mach Mach Mater. 2010;7(1–2):39–57.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.