234
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Development of a numerical model for hydrogen bubble generation, dynamics and trapping during solidification of aluminium alloys through Eulerian-Lagrangian framework

ORCID Icon &
Pages 266-277 | Received 21 Dec 2018, Accepted 04 Nov 2019, Published online: 12 Nov 2019

References

  • Lee PD, Chirazi A, See D. Modeling microporosity in aluminum–silicon alloys: a review. J Light Met. 2001;1:15–30.
  • Pequet C, Gremaud M, Rappaz M. Modeling of microporosity, macroporosity, and pipe-shrinkage formation during the solidification of alloys using a mushy-zone refinement method: applications to aluminum alloys. Metall Mater Trans A. 2002;33A:2095–2105.
  • Sabau AS, Viswanathan: S. Microporosity prediction in aluminum alloy castings. Metall Mater Trans B. 2002;33B:243–255.
  • Zhu JD, Cockcroft SL, Maijer DM, et al. Simulation of microporosity in A356 aluminium alloy castings. Int J Cast Metal Res. 2005;18:229–235.
  • Zhu JD, Cockcroft SL, Maijer DM. Modeling of microporosity formation in A356 aluminum alloy casting. Metall Mater Trans A. 2006;37A:1075–1085.
  • Bahmani A, Hatami N, Varahram N, et al. A mathematical model for prediction of microporosity in aluminum alloy A356. Int J Adv Manuf Tech. 2013;64:1313–1321.
  • Atwood RC, Lee PD. Simulation of the three-dimensional morphology of solidification porosity in an aluminium–silicon alloy. Acta Mater. 2003;51:5447–5466.
  • Atwood RC, Lee PD. Metall Mater Trans B. 2002;33B:209–221. Doi:10.1007/s11663-002-0006-5.
  • Lee PD, Atwood RC, Dashwood RJ, et al. Modeling of porosity formation in direct chill cast aluminum–magnesium alloys. Mater Sci Eng A. 2002;328:213–222.
  • Meidani H, Desbiolles J-L, Jacot A, et al. Three-dimensional phase-field simulation of micropore formation during solidification: morphological analysis and pinching effect. Acta Mater. 2012;60:2518–2527.
  • Lee PD, Hunt JD. Hydrogen porosity in directional solidified aluminium-copper alloys:in situ observation. Acta Mater. 1997;45(10):4155–4169.
  • Wu W, Zhu MF, Sun DK, et al. Modelling of dendritic growth and bubble formation. IOP Conf Ser. 2012;33:012103.
  • Han Q. Motion of bubbles in the mushy zone. Scripta Mater. 2006;55:871–874.
  • Catalina AV, Stefanescu DM, Sen S, et al. Interaction of porosity with a planar solid/liquid interface. Metall Mater Trans A. 2004;35A:1525–1538.
  • Lee PD, Hunt JD. Hydrogen porosity in directionally solidified aluminium–copper alloys: a mathematical model. Acta Mater. 2001;49:1383–1398.
  • Zhao L, Pan Y, Liao H, et al. Degassing of aluminum alloys during re-melting. Mater Lett. 2012;66:328–331.
  • Crowe CT, Schwarzkopf JD, Sommerfeld M, et al. Multiphase flows with droplets and particles. 2nd ed. Florida: CRC Press; 2011.
  • Jenny P, Roekaerts D, Beishuizen N. Modeling of turbulent dilute spray combustion. Prog Energy Combust Sci. 2012;38:846–887.
  • Subramaniam S. Lagrangian–Eulerian methods for multiphase flows. Prog Energy Combust Sci. 2013;38:215–245.
  • Karagadde S, Sundarraj S, Dutta P. Modeling growth of hydrogen bubbles in aluminum castings using the level-set method. Scripta Mater. 2009;61:216–219.
  • Karagadde S, Sundarraj S, Dutta P. A model for growth and engulfment of gas microporosity during aluminum alloy solidification process. Comput Mater Sci. 2012;65:383–394.
  • Voller VRReid KJ. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Tr. 1987;13:297–318.
  • Rösler F, Brüggemann: D. Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments. Heat Mass Transfer. 2011;47:1027–1033.
  • Yamamoto T, Mirsandi H, Jin X, et al. Numerical simulation model by volume averaging for the dissolution process of GaSb into InSb in a sandwich system. Numer Heat Tr-B: Fund. 2016;70:441–458.
  • Zhu JD, Ohnaka: I. Modeling of casting, welding and advanced solidification process. Vol. V. London: Minerals, Metals and Materials Society. 1991. p. 435–442.
  • Eichenauer VW, Hattenbach K, Pebler A. Z Metallkunde. Die Loslicheit von Wasserstoff in festim und flussigem Aluminum. 1961;52:682–684.
  • Qiu C, Olson GB, Opalka SM, et al. Thermodynamic evaluation of the Al-H system. JPED. 2004;25:520–527.
  • Tomiyama A, Tamai H, Zun I, et al. Transverse migration of single bubbles in simple shear flows. Chem Eng Sci. 2002;57:1849–1858.
  • OpenFOAM. An open source CFD software distributed by OpenCFD Ltd. cited 2017 Oct 21 Available from: https://www.openfoam.com/
  • Issa RI. Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys. 1986;62:40–65.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.