393
Views
7
CrossRef citations to date
0
Altmetric
Review

Effect of friction stir processing on microstructural and mechanical properties of lightweight composites and cast metal alloys – A review

, , ORCID Icon &
Pages 169-195 | Received 06 Mar 2021, Accepted 01 Dec 2021, Published online: 09 Dec 2021

References

  • Srinivasan C, Karunanithi M Fabrication of Surface Level Cu/SiCp Nanocomposites by Friction Stir Processing Route Journal of Nanotechnology . J. Nanotechnology. 2015 2015 . https://doi.org/10.1155/2015/612617
  • Sahraeinejad S, Izadi H, Haghshenas M, et al. Fabrication of metal matrix composites by friction stir processing with different Particles and processing parameters. Mater Sci and Eng A. 2015;626:505–513.
  • Srivastava AK, Kumar N, Dixit AR. Friction stir additive manufacturing – an innovative tool to enhance mechanical and microstructural properties. Mater Sci Eng B. 2021;263:114832.
  • Srivastava AK, Dixit AR, Tiwari S. Indian J Eng Mater Sci. 2016;23:171–180.
  • Srivastava AK, Maurya NK, Maurya M, et al. Effect of Multiple Passes on Microstructural and Mechanical Properties of Surface Composite Al 2024/SiC Produced by Friction Stir Processing. Ann Chimi Sci Matér. 2020;44(6):421–426.
  • Srivastava AK, Dixit AR, Tiwari S. A review on the intensification of metal matrix composites and its nonconventional machining. Sci. Eng. Compos. Mater. 2016;25(2):213–228.
  • Mishra RS, Ma: ZY. Friction stir welding and processing. Mater. Sci. Eng., R. 2005;R50(1–2):1–78.
  • Dwivedi R, Singh RK, Kumar S Parametric optimization of process parameters during the friction stir processing of Al7075/SiC/waste eggshell surface composite , et al. Mater Today Proc. 2021. https://doi.org/10.1016/j.matpr.2021.03.545
  • Srivastava AK, Maurya NK, Dixit AR, et al. Experimental investigations of A359/Si3N4 surface composite produced by multi-pass friction stir processing. Mater Chem Phys. 2021;257:123717.
  • Mishra RS, Mahoney MW, Fadden SXM, et al. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr Mater. 1999;42(2):163–168.
  • Kumar S, Srivastava AK, Singh RK Experimental study on hardness and fatigue behavior in joining of AA5083 and AA6063 by friction stir welding , et al. Mater. Today: Proceedings. 2020;25(4):646–648.
  • Srivastava AK, Saxena A, Maurya NK, et al. Revue des Composites et des Matériaux Avancés. J Compos Adv Mater. 2021;31(1):51–56.
  • Srivastava AK, Maurya M, Saxena A Microstructural and fractographic analysis of A359/Si3N4 surface composite produced by friction stir processing , et al. Int J Mater Res. 2021;112(1):68–77.
  • Kumar S, Srivastava AK, Singh RK. Fabrication of AA7075 Hybrid Green Metal Matrix Composites by Friction Stir Processing Technique. Ann Chimi Sci Matér. 2020;44(4):295–300.
  • Ma ZY. Friction Stir Processing Technology: a Review. Metall Mater Trans A. 2008;39(3):642–658.
  • Salem HG, Reynolds AP, Lyons JS. Microstructure and retention of superplasticity of friction stir welded superplastic 2095 sheet. Sc Mater. 2002;46(5):337–342.
  • Sun N, Apelian D. Friction stir processing of aluminum cast alloys for high performance applications. JOM. 2011;63(11):44–50.
  • Kim J-Y, Kim D-O, Byeon J-W. Strength and corrosion resistance of Al-alloying layer on AZ31B magnesium alloy fabricated in situ by reactive friction stir processing. Mater Charact. 2021;174:111024.
  • Su J-Q, Nelson TW, Sterling CJ. Friction stir processing of large-area bulk UFG aluminum alloys. Sc Mater. 2005;52(2):135–140.
  • Grewal HS, Arora HS, Singh H, et al. Surface modification of hydroturbine steel using friction stir processing. Appl Surf. Sci. 2013;268:547–555.
  • Naeem HT, Mohammed KS, Ahmad KR. Effect of friction stir processing on the microstructure and hardness of an aluminum-zinc-magnesium-copper alloy with nickel additives. Phy.Met Metall. 2015;116(10):1035–1046.
  • Arora HS, Grewal HS, Singh H, et al. Microstructure-Property Relationship for Friction Stir Processed Magnesium Alloy. Adv Eng Mater. 2014;16(1):94–102. 2014.
  • Yu Z, Choo H, Feng Z, et al. Influence of thermo-mechanical parameters on texture and tensile behavior of friction stir processed Mg alloy. Scr Mater. 2010;63(11):1112–1115.
  • Khodabakhshi F, Gerlich AP, Simchi A, et al. Cryogenic friction-stir processing of ultrafine-grained Al–Mg–TiO2 nanocomposites. Mater Sci Eng A. 2015;620:471–482.
  • Khodabakhshi F, Simchi A, Kokabi AH, et al. Effects of stored strain energy on restoration mechanisms and texture components in an aluminum–magnesium alloy prepared by friction stir processing. Mater Sci Eng A. 2015;642:204–214.
  • Mehranfar M, Dehghani K. Producing nanostructured super-austenitic steels by friction stir processing. Mater Sci Eng A. 2011;528(9):3404–3408.
  • Chabok A, Dehghani K. Formation of nanograin in IF steels by friction stir processing. Mater Sci Eng A. 2010;528(1):309–313.
  • Xue P, Xiao BL, Ma ZY. Achieving Large-area Bulk Ultrafine Grained Cu via Submerged Multiple-pass Friction Stir Processing. J.Mater Sci Tech. 2013;29(12):1111–1115.
  • Uesugi T, Iwami H, Takigawa Y, et al. Effect of Solute Elements on Grain Refinement during Friction Stir Processing in High-Purity Aluminum. Mater Sci Forum. 2016;838–839:116–121.
  • Hannard F, Castin S, Maire E, et al. Ductilization of aluminium alloy 6056 by friction stir processing. Acta Mater. 2017;130:121–136.
  • McNelley TR, Oh-ishi K, Zhilyaev AP. Microstructure Evolution and Microstructure-Property Relationships in Friction Stir Processing of NiAl Bronze. Mater Sci Forum. 2007;539–543:3745–3750.
  • McNelley TR, Sarath Menon E. Friction Stir Processing (FSP) of Cast Metals: processing - Microstructure - Property Relationships. Mater Sci Forum. 2012;706–709:194–201.
  • Kumar DA, Kotiveerachari B. Influence of addition of Grp/Al2O3p with SiCp on wear properties of aluminum alloy 6061-T6 hybrid composites via friction stir processing. Trans Nonferrous Met Soc China. 2013;23(5):1275–1280.
  • Johannes LB, Charit I, Mishra RS, et al. Enhanced superplasticity through friction stir processing in continuous cast AA5083 aluminum. Mater Sci Eng A. 2007;464(1–2):351–357.
  • Hashim FA, Salim RK, Khudair BH. Effect of Friction Stir Processing on (2024-T3) Aluminum Alloy. IJIRSET. 2015;4(3):1822–1829.
  • Venkateswarlu G Influence of Traverse Speed on Formability Limits of Friction Stir Processed Mg AZ31B Alloy . Int J Adv Tech. 2014;5(2):38–43.
  • Gupta A, Singh P, Gulati P, et al. Effect of Tool rotation speed and feed rate on the formation of tunnel defect in Friction Stir Processing of AZ31 Magnesium alloy. Mater today Proceed. 2015;2(4–5):3463–3470.
  • Manish R, Bhoria A, Pandey SK Friction Stir Processing of Aluminum Alloys (6063): A Review . Int J Recent Tech Eng. 2017;6(4):44–56.
  • El-Rayes MM, El-Danaf EA. The influence of multi-pass friction stir processing on the microstructural and mechanical properties of Aluminum Alloy 6082. J Mater Process Tech. 2012;212(5):1157–1168.
  • Tsai FY, Kao PW. Improvement of mechanical properties of a cast Al–Si base alloy by friction stir processing. Mater Lett. 2012;80:40–42.
  • Karthikeyan L, Senthilkumar VS, Balasubramanian V, et al. Mechanical property and microstructural changes during friction stir processing of cast aluminum 2285 alloy. Mater Design. 2009;30(6):2237–2242.
  • Santella ML, Engstrom T, Storjohann D, et al. Effects of friction stir processing on mechanical properties of the cast aluminum alloys A319 and A356. Scr Mater. 2005;53(2):201–206.
  • Itharaju, Khraisheh M. Ultrafine Grained Material III TMS. 2004. p. 321–329.
  • Shigematsu KI, Saito N. Mechanical properties of fine-grained aluminum alloy produced by friction stir process. Scr Mater. 2003;49(8):785–789.
  • Sharma SR, Ma ZY, Mishra RS. Effect of friction stir processing on fatigue behavior of A356 alloy. Scr Mater. 2004;51(3):237–241.
  • Khalid Rafi H, Janaki Ram GD, Phanikumar G, et al. Microstructural evolution during friction surfacing of tool steel H13. Mater Design. 2011;32(1):82–87.
  • Esther I, Dinaharan I, Murugan, N Microstructure and wear characterization of AA2124/4wt.%B4C nano-composite coating on Ti−6Al−4V alloy using friction surfacing . Trans Nonferrous Met Soc China. 2019;29:1263–1274.
  • Jalilvand MM, Mazaheri Y, Jahani AR. J Stress Anal. 2020;4(2):18.
  • Sanusi KO, Akinlabi ET. Mater Today. 2018;5:18468–18474.
  • Joyson Abaraham S, Chandra Rao Madane S, Dinaharan I, et al. Development of quartz particulate reinforced AA6063 aluminum matrix composites via friction stir processing. J Asian Cer Soc. 2016;4(4):381–389.
  • Dhinakaran I, Kumar RS, Murugan N. Effect of ceramic particulate type on microstructure and properties of copper matrix composites synthesized by friction stir processing. J Mater Res. Tech. 2016;5(4):302–316.
  • Rathee S, Maheshwari S, Siddiqui AN, et al. Effect of tool plunge depth on reinforcement particles distribution in surface composite fabrication via friction stir processing. Defence Tech. 2017;13(2):86–91.
  • Zhao Y, Kai X, Chen G, et al. Effects of friction stir processing on the microstructure and superplasticity of in situ nano-ZrB2/2024Al composite. Prog Nat Sci Mater Int. 2016;26(1):69–77.
  • Rana HG, Badheka VJ, Kumar A. Fabrication of Al7075 / B4C Surface Composite by Novel Friction Stir Processing (FSP) and Investigation on Wear Properties. Proc Tech. 2016;23:519–528.
  • Sunil BR, Reddy GPK, Patle H, et al. Magnesium based surface metal matrix composites by friction stir processing. J Mag Alloys. 2016;4(1):52–61.
  • Dhinakaran I, Kumar SS, Gopalakrishnan KS. Microstructure and sliding wear characterization of Cu/TiB 2 copper matrix composites fabricated via friction stir processing. J Asian Cer Soc. 2017;5(3):295–303.
  • Meena K, Kumar A, Pandya SN. Optimization of Friction Stir Processing Parameters for 60/40 Brass using Taguchi Method. Mater Today Proc. 2017;4(2):1978–1987.
  • Nan X, Bao Y, Shen J. Enhanced strength and ductility of high pressure die casting AZ91D Mg alloy by using cold source assistant friction stir processing. Mater Lett. 2017;190:24–27.
  • Wang Y, Huang YX, Meng X, et al. Microstructural evolution and mechanical properties of Mg Zn Y Zr alloy during friction stir processing. J Alloys Compd. 2017;696:875–883.
  • Dhinakaran I, Kalaiselvan K, Akinlabi ET. Microstructure and wear characterization of rice husk ash reinforced copper matrix composites prepared using friction stir processing. J Alloys Compd. 2017;718:150–160.
  • Khodabakshi F, Marzbanrad B, Shah LH, et al. Friction-stir processing of a cold sprayed AA7075 coating layer on the AZ31B substrate: structural homogeneity, microstructures and hardness. Surf Coat Tech. 2017;331:116–128.
  • Rajesh Kumar R, Udaybhanu V, Ravi KR. Microstructural evolution in ultrafine grained Al-Graphite composite synthesized via combined use of ultrasonic treatment and friction stir processing. J Alloys Compd. 2017;726:358–366.
  • Kumar A, Pal K, Mula S. Simultaneous improvement of mechanical strength, ductility and corrosion resistance of stir cast Al7075-2% SiC micro- and nanocomposites by friction stir processing. J Manuf Proc. 2017; 30: 1–13
  • Babu J, Anjaih M, Mathew A. Experimental studies on Friction stir processing of AZ31 Magnesium alloy. Mater Today Proc. 2018; 5(2): 4515–4522.
  • Silva EP, Leiva DR, Pinto HC, et al. Effects of friction stir processing on hydrogen storage of ZK60 alloy. Int J Hydrol Energy. 2017; 43(24): 11085–11091.
  • Khan M, Rehman A, Aziz T, et al. Effect of inter-cavity spacing in friction stir processed Al 5083 composites containing carbon nanotubes and boron carbide particles. J Mater Proc Tech. 2017; 253: 72–85
  • Rana H, Badheka V. Influence of friction stir processing conditions on the manufacturing of Al-Mg-Zn-Cu alloy/boron carbide surface composite. J Mater Proc Tech. 2018;255:795–807.
  • Arokiasamy S, Anand Ronald B. Enhanced properties of Magnesium based metal matrix composites via Friction Stir Processing. Mater Today Proc. 2018; 5(2): 6934–6939.
  • Kishan V, Devaraju A, Prasanna Lakshmi K. Tribological Properties of Nano TiB2 particle Reinforced 6061-T6 Aluminum Alloy Surface Composites via Friction stir processing. Mater Today Proceed. 2018; 5(1): 1615–1619.
  • Gan YX, Solomon D, Reinbolt M. Friction Stir Processing of Particle Reinforced Composite Materials. Mater (Basel). 2010;3(1):329–350.
  • Chai F, Zhang D, Li Y. Effect of Thermal History on Microstructures and Mechanical Properties of AZ31 Magnesium Alloy Prepared by Friction Stir Processing. Materials. 2014;7(3):1573–1589.
  • Khivavi BA, Aghchai AJ. Effect of Friction Stir Processing on Mechanical Properties of Surface Composite of Cu Reinforced with Cr Particles. Adv Mater Res. 2014;829:851–856.
  • Venkateswarlu G, Davidson MJ, Sammaiah P. J Manuf Indus Eng. 2015. https://doi.org/10.12776/mie.v13i1-2.338
  • Balakrishnan M, Dinaharan I, Palanivel R, et al. Synthesize of AZ31/TiC magnesium matrix composites using friction stir processing. J Mag Alloys. 2015;3(1):76–78.
  • Navazani M, Dehghani K. Fabrication of Mg-ZrO2 surface layer composites by friction stir processing. J Mater Proc Tech. 2016;229:439–449.
  • Huang GQ, Yan YF, Wu J, et al. Microstructure and mechanical properties of fine-grained aluminum matrix composite reinforced with nitinol shape memory alloy particulates produced by underwater friction stir processing. J Alloys Compd. 2019;786:257–271.
  • Sivanesh Prabhu M, Elaya Perumal A, Arulvel S, et al. Friction and wear measurements of friction stir processed aluminium alloy 6082/CaCO3 composite. Measurement. 2019;142:10–20.
  • Chang CI, Dua XH, Huang JC. Achieving ultrafine grain size in Mg–Al–Zn alloy by friction stir processing. Scr Mater. 2007;57(3):209–212.
  • Charit I, Mishra RS. High strain rate superplasticity in a commercial 2024 Al alloy via friction stir processing. Mater Eng. 2003;A359(1–2):290–296.
  • Chang CI, Dua XH, Huang JC. Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys. Scr Mater. 2004;51(6):509–514.
  • Jian-Qing S, Nelson TW, Sterling CJ. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater Sci Eng A. 2005;405(1–2):277–286.
  • Lee CJ, Huang JC. High Strain Rate Superplasticity of Mg Based Composites Fabricated by Friction Stir Processing. Mater Trans. 2006;47(11):2773–2778.
  • Lee CJ, Huang JC, Hsieh PJ. Mg based nano-composites fabricated by friction stir processing. Scr Mater. 2006;54(7):1415–1420.
  • Chang CI, Dua XH, Huang JC. Producing nanograined microstructure in Mg–Al–Zn alloy by two-step friction stir processing. Scr Mater. 2008;59(3):356–359.
  • Surekha K, Murty BS, Prasad Rao K. Effect of processing parameters on the corrosion behaviour of friction stir processed AA 2219 aluminum alloy. Sol Stat Sci. 2009;11(4):907–917.
  • Ni DR, Wang D, Feng AH, et al. Enhancing the high-cycle fatigue strength of Mg–9Al–1Zn casting by friction stir processing. Scr Mater. 2009;61(6):568–571.
  • Wang W, Shi Q-Y, Liu P, et al. A novel way to produce bulk SiCp reinforced aluminum metal matrix composites by friction stir processing. J Mater Proc Tech. 2009;209(4):2099–2103.
  • Shafiei-Zarghani SF, Bozorg K, Zarei-Hanzaki A. Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing. Mater Sci Eng A. 2009;500(1–2):84–91.
  • Morishige T, Hirata T, Tsujikawa M, et al. Comprehensive analysis of minimum grain size in pure aluminum using friction stir processing. Mater Lett. 2010;64(17):1905–1908.
  • Xiao BL, Yang Q, Yang J, et al. Enhanced mechanical properties of Mg–Gd–Y–Zr casting via friction stir processing. J Alloys Compd. 2011;509(6):2879–2884.
  • Dehghani K, Chabok A. Dependence of Zener parameter on the nanograins formed during friction stir processing of interstitial free steels. Mater Sci Eng A. 2011;528(13–14):4325–4330.
  • Morisada Y, Fujii H, Mizuno T, et al. Fabrication of nanostructured tool steel layer by combination of laser cladding and friction stir processing. Surf Coat Tech. 2011;205(11):3397–3403.
  • Mukherjee S, Ghosh AK. Friction stir processing of direct metal deposited copper–nickel 70/30. Mater Sci and Eng A. 2011;528(9):3289–3294.
  • Sua J-Q, Nelson TW, McNelley TR, et al. Development of nanocrystalline structure in Cu during friction stir processing (FSP). Mater Sci Eng A. 2011;528(16–17):5458–5464.
  • Woo W, Feng Z, Wang X-L, et al. In situ neutron diffraction analysis of grain structure during friction stir processing of an aluminum alloy. Mater Lett. 2012;85:29–32.
  • Mahmoud TS, Mohamed SS. Improvement of microstructural, mechanical and tribological characteristics of A413 cast Al alloys using friction stir processing. Mater Sci Eng A. 2012;558:502–509.
  • Mahmoud TS. Surface modification of A390 hypereutectic Al–Si cast alloys using friction stir processing. Surf Coat Tech. 2013;228:209–220.
  • Bo L, Shen Y, Weiye H. Surface nitriding on Ti–6Al–4V alloy via friction stir processing method under nitrogen atmosphere. Appl Surf. Sci. 2013;274:356–364.
  • Kapoor R, Kandasamy K, Mishraa RS, et al. Effect of friction stir processing on the tensile and fatigue behavior of a cast A206 alloy. Mater Sci Eng A. 2013;561:159–166.
  • Ramesh Babu S, SenthilKumar VS, Karunamoorthy L, et al. Investigation on the effect of friction stir processing on the superplastic forming of AZ31B alloy. Mater Design. 2014;53:338–348.
  • Suvarna L, Kumar A. A Novel Approach for Fabrication of Cu-Al2O3 Surface Composites by Friction Stir Processing. Proced Mater Sci. 2014;5:434–443.
  • Rao AG, Katkar VA, Gunasekaran G, et al. Effect of multipass friction stir processing on corrosion resistance of hypereutectic Al–30Si alloy. Corros Sci. 2014;83:198–208.
  • Sabbaghian M, Shamanian M, Akramifard HR, et al. Ceram Int. 2014. https://doi.org/10.1016/j.ceramint. 2014.04.158
  • Du D, Ruidong F, Yijun L, et al. Modification of the Hall–Petch equation for friction-stir-processing microstructures of high-nitrogen steel. Mater Sci and Eng A. 2015;640:190–194.
  • Rao AG, Deshmukh VP, Prabhu N, et al. Ductilizing of a brittle as-cast hypereutectic Al–Si alloy by friction stir processing. Mater Lett. 2015;159:417–419.
  • Arab SM, Karimi S, Jahromi SAJ, et al. Mater Sci Eng A. 2015. https://doi.org/10.1016/j.msea.2015.02.032
  • Iwaszko J, Kudła K, Fila K, et al. The Effect of Friction Stir Processing (FSP) on the Microstructure and Properties of AM60 Magnesium Alloy. Arch Metall Mater. 2016;61(3):1555–1560.
  • Shyam Kumar CN, Bauri R, Yadav D. Wear properties of 5083 Al–W surface composite fabricated by friction stir processing. Trib Int. 2016;101:284–290.
  • Palanivel S, Arora A, Doherty KJ, et al. A framework for shear driven dissolution of thermally stable particles during friction stir welding and processing. Mater Sci Eng A. 2016;678:308–314.
  • Huang C, Wenya L, Zhang Z, et al. Modification of a cold sprayed SiC p /Al5056 composite coating by friction stir processing. Surf Coat Tech. 2016;296:69–75.
  • Kumar N, Mishra RS, Dahotre NB, et al. Mater Design https://doi.org/10.1016/j.matdes.2016.08.039.
  • Kotiyani MZM, Ranjbar K, Reza D. In-situ fabrication of Al 3 Zr aluminide reinforced AA3003 alloy composite by friction stir processing. Mater Charact. 2017;131:78–90.
  • Azizieh M, Iranparast D, Dezfuli MAG, et al. Fabrication of Al/Al 2 Cu in situ nanocomposite via friction stir processing. Trans Nonferrous Met Soc China. 2017;27(4):779–788.
  • Suri A, Sahai A, Hnasraj K, et al. Impact and Tensile testing of Al2024 Alloy Processed by Friction Stir Processing. Proc Eng. 2017;173:679–685.
  • Raja A, Pancholi V. J Mater Proc Tech. 2017. https://doi.org/10.1016/j.jmatprotec.2017.05.001
  • Ajay Kumar P, Madhu HC, Abhishek Pariyar CS, et al. Friction stir processing of squeeze cast A356 with surface compacted graphene nanoplatelets (GNPs) for the synthesis of metal matrix composites. Mater Sci Eng A. 2020;769:138517.
  • Zohoor M, Besharati Givi MK, Salami P. Effect of processing parameters on fabrication of Al–Mg/Cu composites via friction stir processing. Mater Design. 2012;39:358–365.
  • Arora HS, Singh H, Dhindaw BK. Wear behaviour of a Mg alloy subjected to friction stir processing. Wear. 2013;303(1–2):65–77.
  • Asadi P, Givi MKB, Parvin N, et al. On the role of cooling and tool rotational direction on microstructure and mechanical properties of friction stir processed AZ91. Int J Adv Manuf Technol. 2012;63(9–12):987–997.
  • Qian J, Li J, Xiong J, et al. In situ synthesizing Al3Ni for fabrication of intermetallic-reinforced aluminum alloy composites by friction stir processing. Mater Sci Eng A. 2012;550:279–285.
  • Barmouz M, Givi MKB, Seyfi J. On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: investigating microstructure, microhardness, wear and tensile behavior. Mater Charact. 2011;62(1):108–117.
  • Barmouz M, Givi MKB. Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: evaluation of microstructural, porosity, mechanical and electrical behavior. Compos Part A Appl S. 2011;42(10):1445–1453.
  • Barmouz M, Seyfi J, Givi MKB, et al. A novel approach for producing polymer nanocomposites by in-situ dispersion of clay particles via friction stir processing. Mater Sci Eng A. 2011;528(6):3003–3006.
  • Khayyamin D, Mostafapour A, Keshmiri R. The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP. Mater Sci Eng A. 2013;559:217–221.
  • Asadi P, Faraji G, Masoumi A, et al. Experimental Investigation of Magnesium-Base Nanocomposite Produced by Friction Stir Processing: effects of Particle Types and Number of Friction Stir Processing Passes. Passes Metall Mater Trans A. 2011;42(9):2820–2832.
  • Heidarpour MA, Ghasemi S, Ghasemi S. On the surface reinforcing of A356 aluminum alloy by nanolayered Ti3AlC2 MAX phase via friction stir processing. Surf Coat Tech. 2019;377:124884.
  • Karthikeyan L, Senthilkumar VS, Padmanabhan KA. On the role of process variables in the friction stir processing of cast aluminum A319 alloy. Mater Desig. 2010;31(2):761–771.
  • Vedabouriswaran G, Aravindan S. Development and characterization studies on magnesium alloy (RZ 5) surface metal matrix composites through friction stir processing. J Mag Alloys. 2018;6(2):145–163.
  • Senthilkumar R, Prakash M, Arun N, et al. The effect of the number of passes in friction stir processing of aluminum alloy (AA6082) and its failure analysis. Appl Surf Sci. 2019;491:420–431.
  • Izadi H, Nolting A, Munro C, et al. Friction stir processing of Al/SiC composites fabricated by powder metallurgy. J Mater Proc Tech. 2013;213(11):1900–1907.
  • Aldajaha SH, Ajayi OO, Fenskeb GR, et al. Effect of friction stir processing on the tribological performance of high carbon steel. Wear. 2009;267(1–4):350–55.
  • Rahbar-kelishami A, Zadeh A, Hadavi MM, et al. Effects of friction stir processing on wear properties of WC–12%Co sprayed on 52100 steel. Mater Desig. 2015;86:98–104.
  • Feng X, Liu H, Lippold JC. Microstructure characterization of the stir zone of submerged friction stir processed aluminum alloy 2219. Mater Charact. 2013;82:97–102.
  • Xue P, Li WD, Wang D, et al. Enhanced mechanical properties of medium carbon steel casting via friction stir processing and subsequent annealing. Mater Sci Eng A. 2016;670:153–158.
  • Palanivel R, Koshy Mathews P, Murugan N, et al. Mater Design. 2012. https://doi.org/10.1016/j.matdes.2012.03.027
  • Elangovan K, Balasubramanian V. Influences of tool pin profile and tool shoulder diameter on the formation of friction stir processing zone in AA6061 aluminium alloy. Mater Design. 2008;29(2):362–373.
  • Zhang YN, Cao X, Larose S, et al. Review of tools for friction stir welding and processing. Canad Metallurgi Quarter. 2012;51(3):250–261.
  • Kumar KA, Pankaj B. Mater Today Proc. 2017;26:382–392.
  • Vilaça P, Quintino L, Santos JD, et al. Quality assessment of friction stir welding joints via an analytical thermal model, iSTIR. Mater Sci Eng A. 2007;445–446:501–508.
  • Shivaji GV, Kumar A. Heat generation model for taper cylindrical pin profile in FSW. J Mater Res Technol. 2013;2(4):370–375.
  • Sued MK, Pons D, Lavroff D, et al. Design features for bobbin friction stir welding tools: development of a conceptual model linking the underlying physics to the production process. Mater Design. 2014;54:632–643.
  • Rao CV, Reddy GM, Rao KS. Influence of tool pin profile on microstructure and corrosion behaviour of AA2219 Al–Cu alloy friction stir weld nuggets. Defence Tech. 2015;11(3):197–208.
  • Mahmoud ERI, Takahashi M, Shibayanagi T, et al. Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface. Sci Tech Weld Joining. 2009;14(5):413–425.
  • Sharma S, Dhaliwal SSS, Khatter CP ANALYSIS OF TI -NI PARTICLES ON THE MICROSTRUCTURE AND MICRO HARDNESS OF AL6082 FABRICATED BY FRICTION STIR PROCESSING . Int J Eng Sci Res Tech. 2017;6(1):99–107.
  • Cox CD, Gibson BT, Strauss AM, et al. Energy input during friction stir spot welding. J Manuf Proc. 2014;16(4):479–484.
  • Vidal C, Infante V, Vilaça P. Fatigue assessment of friction stir channels. Int J Fatigue. 2014;62:77–84.
  • Jiang J, Wang Y, Jianjun Q. Microstructure and mechanical properties of AZ61 alloys with large cross-sectional size fabricated by multi-pass ECAP. Mater Sci Eng A. 2013;560:473–480.
  • Ghalehbandi SM, Malaki M, Gupta M. Accumulative Roll Bonding—A Review. Appl Sci. 2019;9(17):3627.
  • Lanjewar H, Kestens L, Verleysen P. Dynamic High Pressure Torsion (DHPT)—A Novel Method for High Strain Rate Severe Plastic Deformation. Proceedings. 2018;2(8):493.
  • Varyukhin V, Beygelzimer Y, Kulagin R, et al. Twist Extrusion: fundamentals and Applications. Mater Sci Forum. 2010;667–669:31–37.
  • Sahoo BN, Khan F, Babu S, et al. Microstructural modification and its effect on strengthening mechanism and yield asymmetry of in-situ TiC-TiB2/ AZ91 magnesium matrix composite. Mater Sci Eng A. 2018;724:269–282.
  • Harsha RN, Mithun Kulkarni V, Satish Babu B Severe Plastic Deformation - A Review . Mater Today Proc. 2018;5(10):22340–22349.
  • ULHAS K.G.B, Kumar Veeresh Method of stir casting of Aluminum metal matrix Composites: A review . Mater Today Proc. 2017;4:1140–1146.
  • Chandra Kandpal B, Kumar J, Singh H. Mater Today Proc. 2018;5:5–10.
  • Rathee S, Maheshwari S, Siddiquee AN, et al. Investigating Effects of Groove Dimensions on Microstructure and Mechanical Properties of AA6063/SiC Surface Composites Produced by Friction Stir Processing. Trans Indian Inst Met. 2017;70(3):809–816.
  • Thankachan T, Prakash KS, Kavimani V. Effect of friction stir processing and hybrid reinforcements on copper. Mater Manuf Processes. 2018;33(15):1681–1692.
  • Kumar A, Raj R, Sv K. A novel in-situ polymer derived nano ceramic MMC by friction stir processing. Mater Design. 2015;85:626–634.
  • Kumar A, Yadav D, Cs P, et al. Influence of particulate reinforcement on microstructure evolution and tensile properties of in-situ polymer derived MMC by friction stir processing. Mater Design. 2017;113:99–108.
  • Zhu J, Jiang W, Li G, et al. Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting. J Mater Proces Technol. 2020;283:116699.
  • Matin A, Saniee FF, Abedi HR. Microstructure and mechanical properties of Mg/SiC and AZ80/SiC nano-composites fabricated through stir casting method. Mater Sci Eng A. 2015;625:81–88.
  • Khodabakhshi F, Gerlich AP, Švec P. Fabrication of a high strength ultra-fine grained Al-Mg-SiC nanocomposite by multi-step friction-stir processing. Mater Sci Eng A. 2017;698:313–325.
  • Del Valle JA, Rey P, Gesto D, et al. Mechanical properties of ultra-fine grained AZ91 magnesium alloy processed by friction stir processing. Mater Sci Eng A. 2015;628:198–206.
  • Kiran G, Kh K, Sk S, et al. Machining characteristics of fine grained AZ91 Mg alloy processed by friction stir processing. Trans Nonferrous Metals Society China. 2017;27(4):804–811.
  • Kurt A, Uygur I, Cete E. Surface modification of aluminium by friction stir processing. J Mater Process Technol. 2011;211(3):313–317.
  • Patel V, Li W, Vairis A, et al. Recent Development in Friction Stir Processing as a Solid-State Grain Refinement Technique: microstructural Evolution and Property Enhancement. Crit Rev Solid State Mater Sci. 2019;44(5):378–426.
  • Hofmann DC, Vecchio KS. Submerged friction stir processing (SFSP): an improved method for creating ultra-fine-grained bulk materials. Mater Sci Eng A. 2005;402(1–2):234–241.
  • Yang R, Zhang Z, Zhao Y, et al. Effect of multi-pass friction stir processing on microstructure and mechanical properties of Al3Ti/A356 composites. Mater Charact. 2015;106:62–69.
  • Moustafa E. Effect of Multi-Pass Friction Stir Processing on Mechanical Properties for AA2024/Al2O3 Nanocomposites. Materials. 2017;10(9):1053.
  • Purohit R, Rana RS, Verma CS FABRICATION OF Al-SiCp COMPOSITES THROUGH POWDER Metallurgy Process and Testing Of Properties . Int J Eng Res. 2012;2:19.
  • Manohar G, Dey A, Pandey KM Fabrication of metal matrix composites by powder metallurgy: A review , et al. AIP Conf Proc. 2018;1952:020041.
  • Saravanan C, Subramanian K, Anandakrishnan V, et al. Tribological behavior of AA7075-TiC composites by powder metallurgy. Ind Lubr Tribol. 2018;70(6):1066–1071.
  • Dunstan MK, Paramore JD, Fang ZZ. The effects of microstructure and porosity on the competing fatigue failure mechanisms in powder metallurgy Ti-6Al-4V. Int J Fatigue. 2018;116:584–591.
  • Gessinger GH, Bomford MJ. Powder metallurgy of superalloys. Int Metall Rev. 1974;19(1):51–76.
  • Shalaby EAM, AYu C, Solonin AN, et al. Preparation and characterization of hybrid A359/(SiC+Si3N4) composites synthesized by stir/squeeze casting techniques. Mater Sci Eng A. 2016;674:18–24.
  • Wang HY, Jiang QC, Wang Y, et al. Fabrication of TiB2 particulate reinforced magnesium matrix composites by powder metallurgy. Mater Lett. 2004;58(27–28):3509–3513.
  • Starink MJ, Syngellakis S. Shear lag models for discontinuous composites: fibre end stresses and weak interface layers. Mater Sci Eng A. 1999;270(2):270–277.
  • Sun M, Guo H, Zheng J, et al. Hydrophobic octadecylamine-polyphenol film coated slow released urea via one-step spraying co-deposition. Polym Test. 2020;91:106831.
  • Wang S, Liu Y, Muhammad Y, et al. Fabrication of MoS2-based environment friendly modifier via tannic acid assisted diethylenetriamine co-deposition for the preparation of composite SBS modified asphalt. Constr Build Mater. 2021;285:122871.
  • Li X, Ma G, Jin P, et al. Microstructure and mechanical properties of the ultra-fine grained ZK60 reinforced with low content of nano-diamond by powder metallurgy. J Alloys Compd. 2019;778:309–317.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.