332
Views
16
CrossRef citations to date
0
Altmetric
REVIEW ARTICLE

Microtechnologies in medicine: An overview

, , , &
Pages 76-86 | Published online: 10 Jul 2009

References:

  • Menz W., Buess G. Potential applications of microsystems engineering in minimal invasive surgery. Endosc Surg Allied Technol 1993; 1: 171–80
  • Menz W., Guber A. Microstructure technologies and their potential in medical applications. Minim Invasive Neurosurg 1994; 37: 21–7
  • Wagner B. Principles of development and design of microsystems. Endosc Surg Allied Technol 1995; 3: 204–9
  • Federspil P. A., Plinkert P. K. Restoring hearing with active hearing implants. Biomed Tech (Berl) 2004; 4: 78–82
  • Grabiec P., Domanski K., Janus P., Zaborowski M., et al. Microsystem technology as a road from macro to nanoworld. Bioelectrochemistry 2005; 66: 23–8
  • Wildau H. J. Wireless remote monitoring for patients with atrial tachyarrhythmias. J Electrocardiol 2004; 37(Suppl)53–4
  • Bhisitkul R. B., Keller C. G. Development of Microelectromechanical Systems (MEMS) forceps for intraocular surgery. Br J Ophthalmol 2005; 89: 1586–8
  • Wang C. H., Lee G. B. Automatic bio‐sampling chips integrated with micro‐pumps and micro‐valves for disease detection. Biosens Bioelectron 2005; 15: 419–25
  • Kudo H., Sawada T., Kazawa E., Yoshida H., et al. A flexible and wearable glucose sensor based on functional polymers with soft‐MEMS techniques. Biosens Bioelectron 2006; 22: 558–62
  • Rebello K. Applications of MEMS in surgery. Proceedings of the IEEE 2004; 92((1))
  • Schostek S., Fischer H., Kalanovic D., Schurr M. O. Microsystems in medicine ‐ results of an international survey. Min Invas Ther Allied Technol 2005; 14: 360–8
  • Wong C. M., van Dijk P. J., Laing I. A. A comparison of transcutaneous bilirubinometers: SpectRx BiliCheck versus Minolta AirShields. Arch Dis Child Fetal Neonatal Ed 2002; 87: F137–40
  • Huang Y., Mather E. L., Bell J. L., Madou M. MEMS‐based sample preparation for molecular diagnostics. Anal Bioanal Chem 2002; 372: 49–65
  • Staples M., Daniel K., Cima M. J., Langer R. Application of Micro‐ and Nano‐Electromechanical Devices to Drug Delivery. Pharm Res 2006, (in press)
  • Li Y., Shawgo R. S., Tyler B., Henderson P. T., et al. In vivo release from a drug delivery MEMS device. J Control Release. 2004; 100: 211–9
  • Zahn J. D., Deshmukh A., Pisano A. P., Liepmann D. Continuous on‐chip micropumping for microneedle enhanced drug delivery. Biomed Microdevices 2004; 6: 183–90
  • Bhisitkul R. B., Keller C. G. Development of Microelectromechanical Systems (MEMS) forceps for intraocular surgery. Br J Ophthalmol 2005; 89: 1586–8
  • Schurr M. O., Heyn S. P., Menz W., Buess G. Endosystems – future perspectives for endoluminal therapy. Min Invas Ther Allied Technol 1996; 13: 37–42
  • Schostek S., Ho C. N., Kalanovic D., Schurr M. O. Artificial tactile sensing in minimally invasive surgery ‐ a new technical approach. Min Invas Ther Allied Technol 2006; 15: 296–304
  • George M., Albrecht H. J., Schurr M. O., Papageorgas P., et al. A laser‐scanning endoscope base on monosilicon micromachined mirrors with enhanced attributes. 5143, Novel Optical Instrumentation for Biomedical Applications Proc. SPIE, Volume 2003
  • George M. optical methods and sensors for in situ histology and endoscopy. Min Invas Ther & Allied Technol 2004; 13: 95–104
  • Piyawattanametha W., Barretto R. P., Ko T. H., Flusberg B. A., et al. Fast‐scanning two‐photon fluorescence imaging based on a microelectromechanical systems two‐ dimensional scanning mirror. Opt Lett 2006; 31: 2018–20
  • Arshak A., Arshak K., Waldron D., Morris D., et al. Review of the potential of a wireless MEMS and TFT microsystems for the measurement of pressure in the GI tract. Med Eng Phys 2005; 27: 347–56
  • Gong F., Swain P., Mills T. Wireless endoscopy. Gastrointest Endosc 2000; 51: 725–9
  • Triester S. L., Leighton J. A., Leontiadis G. I., Gurudu S. R., et al. A meta‐analysis of the yield of capsule endoscopy compared to other diagnostic modalities in patients with non‐stricturing small bowel Crohn's disease. Am J Gastroenterol 2006; 101: 954–64
  • Maunoury V., Savoye G., Bourreille A., Bouhnik Y., et al. Value of wireless capsule endoscopy in patients with indeterminate colitis (inflammatory bowel disease type unclassified). Inflamm Bowel Dis 2006, (in press)
  • Leighton J. A. Recent advances in endoscopic capsule imaging: see what we have been missing. Rev Gastroenterol Disord 2006; 6(Suppl 1)S19–27
  • Moglia A., Menciassi A., Schurr M. O., Dario P. Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomed Microdevices 2006, (in press)
  • Menciassi A., Dario P. Bio‐inspired solutions for locomotion in the gastrointestinal tract: background and perspectives. Philos Transact A Math Phys Eng Sci 2003; 361: 2287–98
  • Zuo J., Yan G., Gao Z. A micro creeping robot for colonoscopy based on the earthworm. J Med Eng Technol 2005; 29: 1–7
  • Dario P., Carrozza M. C., Pietrabissa A. Development and in vitro testing of a miniature robotic system for computer‐assisted colonoscopy. Comput Aided Surg 1999; 4: 1–14
  • Phee L., Accoto D., Menciassi A., Stefanini C., et al. Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Trans Biomed Eng 2002; 49: 613–6
  • Chi D., Yan G. From wired to wireless: a miniature robot for intestinal inspection. J Med Eng Technol 2003; 27: 71–6
  • Renard E. Implantable insulin delivery pumps. Min Invas Ther Allied Technol 2004; 13: 328–35
  • Zacheja J., Wenzel D., Bach T., Clasbrummel B. Micromechanical pressure sensors for medical evaluation of blood vessels and bypasses after surgical intervention. Biomed Tech (Berl) 1998; 43(Suppl)182–3
  • Ericson M. N., Wilson M. A., Cote G. L., Baba J. S., et al. Implantable sensor for blood flow monitoring after transplant surgery. Min Invas Ther Allied Technol 2004; 13: 87–94
  • Clasbrummel B., Muhr G., Moellenhoff G. Pressure sensors for the monitoring of diseases in surgical care. Min Invas Ther Allied Technol 2004; 13: 105–9
  • Fischer H., Haller D., Echtle D. Minimally invasive pressure sensor for telemetric recording of intravesical pressure in the human. Biomed Tech (Berl) 2002; 47(Suppl 1 Pt 1)338–41
  • Ellozy S. H., Carroccio A., Lookstein R. A., Minor M. E., et al. First experience in human beings with a permanently implantable intrasac pressure transducer for monitoring endovascular repair of abdominal aortic aneurysms. J Vasc Surg 2004; 40: 405–12
  • Svedbergh B., Backlund Y., Hok B., Rosengren L. The IOP‐IOL. A probe into the eye. Acta Ophthalmol (Copenh) 1992; 70: 266–8
  • Laube T., Schanze T., Brockmann C., Bolle I., et al. Chronically implanted epidural electrodes in Gottinger minipigs allow function tests of epiretinal implants. Graefes Arch Clin Exp Ophthalmol 2003; 241: 1013–9
  • Weiland J. D., Liu W., Humayun M. S. Retinal prosthesis. Annu Rev Biomed Eng. 2005; 7: 361–401
  • Walter P., Mokwa W. Epiretinal visual prostheses. Ophthalmologe 2005; 102: 933–40
  • Gekeler F., Szurman P., Grisanti S., Weiler U., et al. Compound subretinal prostheses with extra‐ocular parts designed for human trials: successful long‐term implantation in pigs. Graefes Arch Clin Exp Ophthalmol 2006, (in press)
  • Stieglitz T., Schuettler M., Koch K. P. Neural prostheses in clinical applications–trends from precision mechanics towards biomedical microsystems in neurological rehabilitation. Biomed Tech (Berl) 2004; 49: 72–7
  • Haga Y., Matsunaga T., Makishi W., Totsu K., et al. Minimally invasive diagnostics and treatment using micro/nano machining. Minim Invasive Ther Allied Technol 2006; 15: 218–25
  • Zhang H., Hutmacher D. W., Chollet F., Poo A. N., et al. Microrobotics and MEMS‐based fabrication techniques for scaffold‐based tissue engineering. Macromol Biosci 2005; 5: 477–89
  • Aponte V. M., Finch D. S., Klaus D. M. Considerations for non‐invasive in‐flight monitoring of astronaut immune status with potential use of MEMS and NEMS devices. Life Sci 2006; 79: 1317–33
  • Neuder K., Dehm J. Technical standards for microsensors in surgery and minimally invasive therapy. Min Invas Ther Allied Technol 2004; 13: 110–3
  • Kalanovic D., Schurr M. O. Innovation requirements for telemetric sensor systems in medicine: results of a survey in Germany. Min Invas Ther Allied Technol 2004; 13: 68–77

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.