261
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Detonation models of fast combustion waves in nanoscale Al-MoO3 bulk powder media

, &
Pages 25-39 | Received 02 Sep 2011, Accepted 29 Jul 2012, Published online: 27 Nov 2012

References

  • Bockmon , B. S. , Pantoya , M. L. , Son , S. F. , Asay , B. W. and Mang , J. T. 2005 . Combustion velocities and propagation mechanisms of meta-stable intermolecular composites . J. Appl. Phys. , 98 : 064903 doi: 10.1063/1.2058175
  • Granier , J. J. and Pantoya , M. L. 2004 . Laser ignition of nanocomposite thermites . Combust. Flame , 138 : 373 – 383 . doi: 10.1016/j.combustflame.2004.05.006
  • Hunt , E. M. and Pantoya , M. L. 2005 . Ignition dynamics and activation energies of metallic thermites: From nano- to micron-scale particulate composites . J. Appl. Phys. , 98 : 034909 doi: 10.1063/1.1990265
  • Dikici , B. , Pantoya , M. L. and Levitas , V. 2010 . The effect of pre-heating on flame propagation behavior in nanocomposite thermites . Combust. Flame , 157 : 1581 – 1585 . doi: 10.1016/j.combustflame.2010.04.014
  • Son , S. F. , Asay , B. W. , Foley , T. J. , Yetter , R. A. , Wu , M. H. and Risha , G. A. 2007 . Combustion of nanoscale Al/MoO3 thermite in microchannels . J. Propul. Power , : 23 – 721 . 715
  • Weismiller , M. R. , Malchi , J. Y. , Yetter , R. A. and Foley , T. J. 2009 . Dependence of flame propagation on pressure and pressurizing gas for an Al/CuO nanoscale thermite . Proc. Combust. , 32 : 1895 – 1903 . doi: 10.1016/j.proci.2008.06.191
  • Asay , B. W. , Son , S. F. , Busse , J. R. and Oschwald , D. M. 2004 . Ignition characteristics of metastable intermolecular composites . Propell. Explos. Pyrot. , 29 : 216 – 219 . doi: 10.1002/prep.200400049
  • Sanders , V. E. , Asay , B. W. , Foley , T. J. , Tappan , B. C. , Pacheco , A. N. and Son , S. F. 2007 . Reaction propagation of four nanoscale energetic composites (Al/MoO3, Al/WO3, Al/CuO and Bi2O3) . J. Propul. Power , 23 : 707 – 714 . doi: 10.2514/1.26089
  • Plantier , K. B. , Pantoya , M. L. and Gash , A. E. 2005 . Combustion wave speeds of nanocomposite Al/Fe2O3: The effects of Fe2O3 particle synthesis technique . Combust. Flame , 140 : 299 – 309 . doi: 10.1016/j.combustflame.2004.10.009
  • Sullivan , K. and Zachariah , M. R. 2010 . Simultaneous pressure and optical measurements of nanoaluminum thermites: Investigating the reaction mechanism . J. Propul. Power , 26 : 467 – 472 . doi: 10.2514/1.45834
  • Dean , S. W. , Pantoya , M. L. , Gash , A. E. , Stacy , S. C. and Hope-Weeks , L. 2010 . Enhanced convective heat transfer from non-gas generating nanoscale thermite reactions . J. Heat Transfer , 132 : 111201 – 111208 . doi: 10.1115/1.4001933
  • Watson , K. W. , Pantoya , M. L. and Levitas , V. I. 2008 . Fast reactions with nano and micron aluminum: A study on oxidation versus fluorination . Combust. Flame , 155 : 619 – 634 . doi: 10.1016/j.combustflame.2008.06.003
  • Russell , R. , Bless , S. and Pantoya , M. 2010 . Impact driven thermite reactions with iodine pentoxide and silver oxide . J. Energ. Mat. , 29 : 175 – 192 . in Press Aug., 2 doi: 10.1080/07370652.2010.514318
  • Moore , K. and Pantoya , M. L. 2006 . Combustion effects of environmentally altered molybdenum trioxide nanocomposites . Propell. Explos. Pyrot. , 31 : 182 – 187 . doi: 10.1002/prep.200600025
  • Moore , K. , Pantoya , M. L. and Son , S. F. 2007 . Combustion behaviors resulting from bimodal aluminum size distributions in thermites . J. Propul. Power , 23 : 181 – 185 . doi: 10.2514/1.20754
  • Prentice , D. , Pantoya , M. L. and Gash , A. E. 2006 . Combustion wave speeds of sol-gel synthesized tungsten trioxide and nano-aluminum: The effect of impurities on flame propagation . Energ. Fuel. , 20 : 2370 – 2376 . doi: 10.1021/ef060210i
  • Levitas , V. I. , Pantoya , M. L. and Dikici , B. 2008 . Melt-dispersion versus diffusive oxidation mechanism for aluminum nanoparticles: Critical experiments and controlling parameters . Appl. Phys. Lett. , 92 : 0011921 doi: 10.1063/1.2824392
  • Dikici , B. , Pantoya , M. L. , Levitas , V. and Jouet , R. J. 2009 . The influence of aluminum passivation on the reaction mechanism: Flame propagation studies . Energ. Fuel. , 23 : 4231 – 4235 . doi: 10.1021/ef801116x
  • Malchi , J. Y. , Foley , T. J. , Son , S. F. and Yetter , R. A. 2008 . The effect of added Al2O3 on the propagation behavior of an Al/CuO nano-scale thermite . Combust. Sci. Technol. , 180 : 1278 – 1294 . doi: 10.1080/00102200802049471
  • Weismiller , M. R. , Malchi , J. Y. , Lee , J. G. , Yetter , R. A. and Foley , T. J. 2010 . Effects of fuel and oxidizer particle dimensions on the propagation of aluminum containing thermites . Proc. Combust. , 33 : 1989 – 1996 . doi: 10.1016/j.proci.2010.06.104
  • Martirosyan , K. S. , Wang , L. and Luss , D. 2009 . Nanoenergetic system based on iodine pentoxide . Chem. Phys. Lett. , 483 : 107 – 110 . doi: 10.1016/j.cplett.2009.10.038
  • Martirosyan , K. S. , Wang , L. , Vincent , A. and Luss , D. 2009 . Synthesis and performance of bismuth trioxide nanoparticles for high energy gas generator use . Nanotechnology , 20 : 405609 – 40517 . doi: 10.1088/0957-4484/20/40/405609
  • Park , K. , Lee , D. , Rai , A. , Mukherjee , D. and Zachariah , M. R. 2005 . Size-Resolved Kinetic Measurements of Aluminum Nanoparticle Oxidation with Single Particle Mass Spectrometry . J. Phys. Chem. B , 109 : 7290 – 7299 . doi: 10.1021/jp048041v
  • Rai , A. , Park , K. , Zhou , L. and Zachariah , M. R. 2006 . Understanding the mechanism for aluminum nanoparticle oxidation . Combust. Theor. Model. , 10 : 843 – 859 . doi: 10.1080/13647830600800686
  • Trunov , M. A. , Schoenitz , M. and Dreizin , E. L. 2006 . Effect of polymorphic phase transformations in alumina layer on ignition of aluminium particles . Combust. Theor. Model. , 10 : 603 – 623 . doi: 10.1080/13647830600578506
  • Levitas , V. I. , Asay , B. W. , Son , S. F. and Pantoya , M. L. 2006 . Melt dispersion mechanism for fast reaction of nanothermites . Appl. Phys. Lett. , 89 : 071909 doi: 10.1063/1.2335362
  • Levitas , V. I. , Asay , B. W. , Son , S. F. and Pantoya , M. L. 2007 . Mechanochemical mechanism for fast reaction of metastable intermolecular composites based on dispersion of liquid metal . J. Appl. Phys. , 101 : 083524 doi: 10.1063/1.2720182
  • Zhang , F. 2006 . Detonation in reactive solid particle-gas flow . J. Propul. Power , 22 : 1289 – 1309 . doi: 10.2514/1.18210
  • Zeldovich , Y. B. and Kompaneets , A. S. 1960 . Theory of Detonation , Academic Press, New York .
  • Rudinger , G. 1965 . Some effects of finite particle volume on the dynamics of gas-particle mixtures . AIAA J. , 3 : 1217 – 1222 . doi: 10.2514/3.3112
  • Rudinger , G. 1980 . Fundamentals of gas-particle flow in Handbook of Powder Technology , Edited by: Williams , J. C. and Allen , T. Vol. 2 , New York : Elsevier Scientific Publishing company .
  • Pantoya , M. L. , Levitas , V. I. , Granier , J. J. and Henderson , J. B. 2009 . Effect of bulk density on reaction dynamics in nano vs micron particulate thermites . J. Propul. Power , 25 : 465 – 470 . doi: 10.2514/1.36436
  • Moore , D. S. , Son , S. F. and Assay , B. W. 2004 . Time resolved spectral emission of deflagrating nano-Al and nano-MoO3 metastable interstitial composites . Propell. Explos. Pyrot. , 29 : 106 – 111 . doi: 10.1002/prep.200400038
  • Reynolds , W. C. 1987 . STANJAN Chemical Equilibrium Solver, v. 3.91 , Stanford, CA : Mechanical Engineering Department, Stanford University .
  • Yoo , S. , Stewart , D. S. , Lambert , D. E. , Lieber , M. A. and Szuck , M. J. Modeling solid state detonation and reactive materials . Proceedings of the 14th International Detonation Symposium , pp. 211 – 218 . ONR Publication 351-10-185

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.