414
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

LES based investigation of autoignition in turbulent co-flow configurations

, &
Pages 224-259 | Received 09 Mar 2012, Accepted 13 Sep 2012, Published online: 19 Dec 2012

References

  • Mastorakos , E. , Baritaud , T. and Poinsot , T. 1997 . Numerical simulations of autoignition in turbulent mixing flows . Combust. Flame , 109 : 198 – 223 . doi: 10.1016/S0010-2180(96)00149-6
  • Im , H. G. , Chen , J. H. and Law , C. K. 1998 . Ignition of hydrogen/air mixing layer in turbulent flows . Symp. (Int.) Combust. , 27 : 1047 – 1056 . doi: 10.1016/S0082-0784(98)80505-5
  • Sreedhara , S. and Lakshmisha , K. N. 2000 . Direct numerical simulation of autoignition in a nonpremixed, turbulent medium . Proc. Combust. Inst. , 28 : 25 – 33 . doi: 10.1016/S0082-0784(00)80191-5
  • Sreedhara , S. and Lakshmisha , K. N. 2001 . Direct Numerical Simulation of scalar mixing and autoignition in a turbulent medium . J. Aeronaut. Soc. India , 53 (2), p. 65.
  • Echekki , T. and Chen , J. 2003 . Direct Numerical Simulations of auto-ignition in non-homogeneous hydrogen–air mixtures . Combust. Flame , 134 : 169 – 191 . doi: 10.1016/S0010-2180(03)00088-9
  • Kerkemeier , S. 2010 . Direct numerical simulation of combustion on peta-scale formats: Application to non-premixed hydrogen autoignition , Ph.D. diss., ETH Zürich .
  • Kerkemeier , S. , Frouzakis , C. , Boulouchos , K. and Mastorakos , E. Numerical simulation of autoignition of a diluted hydrogen plume in co-flowing turbulent hot air . 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4–7 January 2010, Orlando, FL, AIAA, 2010 , 1 – 12 .
  • Blouch , J. , Sung , C. , Fotache , C. and Law , C. 1998 . Turbulent ignition of nonpremixed hydrogen by heated counter flowing atmospheric air . Proc. Combust. Inst. , 27 : 1221 – 1228 .
  • Blouch , J. and Law , C. 2003 . Effects of turbulence one-point non-premixed ignition of hydrogen in heated counterflow . Combust. Flame , 132 : 512 – 522 . doi: 10.1016/S0010-2180(02)00499-6
  • Markides , C. and Mastorakos , E. 2010 . Experimental investigation of the effects of turbulence and mixing on auto-ignition chemistry . Flow Turbul. Combust. , 86 : 585 – 608 . doi: 10.1007/s10494-010-9268-1
  • Mastorakos , E. 2009 . Ignition of turbulent non-premixed flames . Prog. Energy Combust. Sci. , 35 : 57 – 97 . doi: 10.1016/j.pecs.2008.07.002
  • Cabra , R. , Chen , J. Y. , Dibble , A. N. and Barlow , R. S. 2005 . Lifted methane air jet flames in a vitiated coflow . Combust. Flame , 143 : 491 – 506 . doi: 10.1016/j.combustflame.2005.08.019
  • Markides , C. and Mastorakos , E. 2005 . An experimental study of hydrogen autoignition in a turbulent co-flow of heated air . Proc. Combust. Inst. , 30 : 883 – 891 . doi: 10.1016/j.proci.2004.08.024
  • Jones , W. , Navarro-Martinez , S. and Röhl , O. 2007 . Large eddy simulation of hydrogen auto-ignition with a probability density function method . Proc. Combust. Inst. , 31 : 1765 – 1771 . doi: 10.1016/j.proci.2006.07.041
  • Jones , W. and Navarro-Martinez , S. 2008 . Study of hydrogen auto-ignition in a turbulent air co-flow using a Large Eddy Simulation approach . Comput. & Fluids , 37 : 802 – 808 . doi: 10.1016/j.compfluid.2007.02.015
  • Galpin , J. , Angelberger , C. , Naudin , A. and Vervisch , L. 2008 . Large-eddy simulation of H2 air auto-ignition using tabulated detailed chemistry . J. Turbul. , 13 : 1 – 21 .
  • Duwig , C. C. , Stanković , D. , Fuchs , L. , Li , G. and Gutmark , E. 2008 . Experimental and numerical study of flameless combustion in a model gas turbine combustor . Combust. Sci. Technol. , 180 : 279 – 295 . doi: 10.1080/00102200701739164
  • Stanković , I. , Triantafyllidis , A. , Mastorakos , E. , Lacor , C. and Merci , B. 2011 . Simulation of hydrogen auto-ignition in a turbulent co-flow of heated air with LES and CMC approach . Flow Turbul. Combust. , 86 : 689 – 710 . doi: 10.1007/s10494-010-9277-0
  • Valino , L. 1998 . A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow . Flow Turbul. Combust. , 60 : 157 – 172 . doi: 10.1023/A:1009968902446
  • Bradley , D. , Kwa , L. K. , Lau , A. K. and Missaghi , C. M. 1998 . Laminar flamelet modelling of recirculating premixed methane and propane–air combustion . Combust. Flame , 71 : 109 – 122 . doi: 10.1016/0010-2180(88)90001-6
  • Bradley , D. and Lau , A. 1990 . The mathematical modelling of premixed turbulent combustion . Pure & Appl. Chem. , 62 : 803 – 814 . doi: 10.1351/pac199062050803
  • Benim , A. C. and Syed , K. J. 1998 . Laminar flamelet modelling of turbulent premixed combustion . Appl. Math. Model. , 22 : 113 – 136 . doi: 10.1016/S0307-904X(98)00012-2
  • Polifke , W. , Bettelini , M. , Geng , W. , Müller , U. C. , Weisenstein , W. and Jansohn , P.vA. Comparison of combustion models for industrial applications . Computational Fluid Dynamics ’98, Proceedings of the Fourth ECCOMAS Conference , 7–11 September 1998, Athens, Greece, Wiley, 1998.
  • Chang , C. , Zhang , K. N. , Bray , K. and Rogg , B. 1996 . Modelling and simulation and autoignition under simulated diesel engine conditions . Combust. Sci. Technol. , 113-114 : 205 – 219 . doi: 10.1080/00102209608935495
  • De Goey , L. P.H. , ten , J. H.M. and Boonkkamp , Thije . 1999 . A flamelet description of premixed laminar flames and the relation with flame stretch . Combust. Flame , 119 : 253 – 271 . doi: 10.1016/S0010-2180(99)00052-8
  • Brandt , M. , Polifke , W. , Ivancic , B. , Flohr , P. and Paikert , B. 2003 . Auto-ignition in a gas turbine burner at elevated temperature , in International Gas Turbine and Aeroengine Congress & Exposition, 16–19 June 2003, Atlanta, GA, paper 2003-GT-38224, ASME .
  • Ivancic , B. , Flohr , P. , Paikert , B. , Brandt , M. and Polifke , W. 2004 . Auto-ignition and heat release in a gas turbine burner at elevated temperature , in International Gas Turbine and Aeroengine Congress & Exposition, 14–17 June 2004, Vienna, Austria, paper GT-2004-53339, ASME .
  • Brandt , M. , Polifke , W. and Flohr , P. 2006 . Approximation of joint PDFs by discrete distributions generated with Monte-Carlo methods . Combust. Theor. Model. , 10 : 535 – 558 . doi: 10.1080/13647830500497815
  • Pierce , C. and Moin , P. Progress-variable approach for large-eddy simulation of turbulent combustion . Tech. Rep. CTR, Stanford University, CA Online. ,
  • Pierce , C. and Moin , P. 2004 . Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion . J. Fluid Mech. , 504 : 73 – 97 . doi: 10.1017/S0022112004008213
  • Vervisch , L. , Hauguel , R. , Domingo , P. and Rullaud , M. 2004 . Three facets of turbulent combustion modelling: DNS of premixed v-flame, LES of lifted nonpremixed flame and RANS of jet-flame . J. Turbul. , 5 : 1 – 36 . doi: 10.1088/1468-5248/5/1/004
  • Domingo , P. , Vervisch , L. and Bray , K. 2002 . Partially premixed flamelets in LES of nonpremixed turbulent combustion . Combust. Theor. Model. , 6 : 529 – 551 . doi: 10.1088/1364-7830/6/4/301
  • Domingo , P. , Vervisch , L. and Veynante , D. 2008 . Large-eddy simulation of a lifted methane jet flame in a vitiated coflow . Combust. Flame , 152 : 415 – 432 . doi: 10.1016/j.combustflame.2007.09.002
  • Goodwin , D. G. Cantera: object-oriented software for reacting flows . Tech. Rep., California Institute of Technology, CA, 2002. , Available at: http://blue.caltech.edu/cantera/index.html
  • Li , J. , Zhao , Z. , Kazokov , A. and Dryer , F. 2004 . An updated comprehensive kinetic model of hydrogen combustion . Int. J. Chem. Kinet. , 36 : 566 – 575 . doi: 10.1002/kin.20026
  • Gicquel , O. , Darabiha , N. and Thevenin , D. R. 2000 . Laminar premixed hyrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion . Proc. Combust. Inst. , 28 : 1901 – 1908 . doi: 10.1016/S0082-0784(00)80594-9
  • Kulkarni , R. and Polifke , W. LES of Delft-Jet-In-Hot-Coflow (DJHC) with tabulated chemistry and stochastic fields combustion model . Fuel Process. Technol. Special Issue: The Eleventh International Conference on Combustion and Energy Utilization (11th ICCEU), 9–13 May 2012, Coimbra, Portugal, (2012) , 1 – 10 .
  • Sabel’nikov , V. and Soulard , O. Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker–Planck equations for probability density functions of turbulent reactive scalars . Phys. Rev. E 72 (2005), 016301. ,
  • Jones , W. and Navarro-Martinez , S. 2007 . Large eddy simulation of autoignition with a subgrid probability density function method . Combust. Flame , 150 : 170 – 187 . doi: 10.1016/j.combustflame.2007.04.003
  • Jones , W. and Prasad , S. 2010 . Large eddy simulation of the Sandia flame series (D–F) using the Eulerian stochastic field method . Combust. Flame , 157 : 1621 – 1636 . doi: 10.1016/j.combustflame.2010.05.010
  • Villermaux , J. and Devillon , J. C. Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modéle d’interaction phénoménologique . Proceedings of the Second International Symposium on Chemical Reaction Engineering (ISCRE), 2–4 May 1972, Amsterdam, Vol. B1, Elsevier, New York , 1972, pp. 1–13.
  • Markides , C. 2005 . Autoignition in turbulent flows , Ph.D. diss., University of Cambridge, Cambridge, UK .
  • Yetter , R. , Dryer , F. and Rabitz , H. 1991 . A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics . Combust. Sci. Technol. , 79 : 97 – 129 . doi: 10.1080/00102209108951759
  • ANSYS inc . academic research, fluent release 6.3 (2006) . Tech. Rep. (2012). ,
  • Mathey , F. , Cokljat , D. , Bertoglio , J. P. and Sergent , E. 2006 . Assessment of the vortex method for large eddy simulation inlet conditions . Prog. Comput. Fluid Dynam. , 6 : 58 – 67 . doi: 10.1504/PCFD.2006.009483
  • Celik , I. , Cehreli , Z. and Yavuz , I. 2005 . Index of resolution quality for large eddy simulations . J. Fluids Engng. , 127 : 949 – 958 . doi: 10.1115/1.1990201
  • Taylor , G. 1953 . Dispersion of soluble matter in solvent flowing slowly through a tube . Proc. Roy. Soc. London , A 219 : 186 – 203 .
  • Ihme , M. and See , Y. 2010 . Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model . Combust. Flame , 157 : 1850 – 1862 . doi: 10.1016/j.combustflame.2010.07.015
  • Borghi , R. On the structure and morphology of turbulent flame propagation in premixed gases, in Recent Advances in Aerospace Science . 117 – 138 . C. Bruno and S. Casci, eds., Plenum, New York, 1985

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.