563
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

A transported probability density function/photon Monte Carlo method for high-temperature oxy–natural gas combustion with spectral gas and wall radiation

, , &
Pages 354-381 | Received 02 Nov 2012, Accepted 04 Jan 2013, Published online: 14 Mar 2013

References

  • IEA . CO2 emissions from fuel combustion highlights . 2011 ed. Available at www.iea.org/co2highlights/CO2highlights.pdf.
  • Chen , L. , Yong , S. Z. and Ghoniem , A. F. 2012 . Oxy–fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling . Prog. Energy Combust. Sci. , 38 : 156 – 214 . doi: 10.1016/j.pecs.2011.09.003
  • Kayukawa , N. 2004 . Open-cycle magnetohydrodynamic electrical power generation: A review and future perspectives . Prog. Energy Combust. Sci. , 30 : 33 – 60 . doi: 10.1016/j.pecs.2003.08.003
  • Woodside , C. R. , Casleton , K. H. , Pepper , J. , Celik , I. B. , Haworth , D. C. , Huckaby , E. D. , Marzouk , O. A. , Ochs , T. , Oryshchyn , D. , Richards , G. , Strakey , P. A. , Escobar-Vargas , J. and Zhao , X. Y. 2012 . Direct power extraction with oxy-combustion: An overview of magnetohydrodynamic research activities at the NETL-RUA 2012 International Pittsburgh Coal Conference , Pittsburgh , PA : 15–18 October 2012 .
  • Baukal , C. E. Jr . 1998 . Oxygen-Enhanced Combustion , Boca Raton , FL : CRC Press .
  • Edge , P. , Gharebaghi , M. , Irons , R. , Porter , R. , Porter , R.T. J. , Pourkashanian , M. , Smith , D. , Stephenson , P. and Williams , A. 2011 . Combustion modelling opportunities and challenges for oxy–coal carbon capture technology . Chem. Eng. Res. Des. , 89 : 1470 – 1493 . doi: 10.1016/j.cherd.2010.11.010
  • Wang , A. and Modest , M. F. 2007 . Spectral Monte Carlo models for nongray radiation analyses in inhomogeneous participating media . Int. J. Heat Mass Transfer , 50 : 3877 – 3889 . doi: 10.1016/j.ijheatmasstransfer.2007.02.018
  • Pope , S. B. 1985 . PDF methods for turbulent reactive flows . Prog. Energy Combust. Sci. , 11 : 119 – 192 . doi: 10.1016/0360-1285(85)90002-4
  • Haworth , D. C. 2010 . Progress in probability density function methods for turbulent reacting flows . Prog. Energy Combust. Sci. , 36 : 168 – 259 . doi: 10.1016/j.pecs.2009.09.003
  • Haworth , D. C. and Pope , S. B. 2011 . Transported probability density function methods for Reynolds-averaged and large-eddy simulations . in Turbulent Combustion Modeling – Advances, New Trends and Perspectives, T. Echekki and E. Mastorakos, eds., Springer , : 119 – 142 .
  • Mehta , R. S. , Haworth , D. C. and Modest , M. F. 2010 . Composition PDF/photon Monte Carlo modeling of moderately sooting turbulent jet flames . Combust. Flame , 157 : 982 – 994 . doi: 10.1016/j.combustflame.2009.11.009
  • Mehta , R. S. , Modest , M. F. and Haworth , D. C. 2010 . Radiation characteristics and turbulence–radiation interactions in sooting turbulent jet flames . Combust. Theory Modell. , 14 : 105 – 124 . doi: 10.1080/13647831003660529
  • Gupta , A. , Haworth , D. C. and Modest , M. F. 2013 . Turbulence–radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames . Proc. Combust. Inst. , 34 : 1281 – 1288 . doi: 10.1016/j.proci.2012.05.052
  • Barlow , R. S. , Fiechtner , G. J. , Carter , C. D. and Chen , J. Y. 2000 . Experiments on the scalar structure of turbulent CO/H2/N2 jet flames . Combust. Flame , 120 : 549 – 569 . doi: 10.1016/S0010-2180(99)00126-1
  • Zhao , X. Y. , Haworth , D. C. and Huckaby , E. D. 2012 . Transported PDF modeling of nonpremixed turbulent CO/H2/N2 jet flames . Combust. Sci. Technol. , 184 : 676 – 693 . doi: 10.1080/00102202.2012.660223
  • Lallemant , N. , Breussin , F. , Weber , R. , Ekman , T. , Dugue , J. , Samaniego , J. M. , Charon , O. , Hoogen , A.J.V.D. , Bemt , J.V. D. , Fujisaki , W. , Imanari , T. , Nakamura , T. and Iino , and K. 2000 . Flame structure, heat transfer and pollutant emissions characteristics of oxy–natural gas flames in the 0.7-1 MW thermal input range . J. Inst. Energy , 73 : 169 – 182 .
  • Lallemant , N. , Dugue , J. and Weber , R. 2003 . Measurement techniques for studying oxy–natural gas flames . J. Inst. Energy , 76 : 38 – 53 .
  • Westbrook , C. K. and Dryer , F. L. 1981 . Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames . Combust. Sci. Technol. , 27 : 31 – 43 . doi: 10.1080/00102208108946970
  • Jones , W. P. and Lindstedt , R. P. 1988 . Global reaction schemes for hydrocarbon combustion . Combust. Flame , 73 : 233 – 249 . doi: 10.1016/0010-2180(88)90021-1
  • Yin , C. , Rosendahl , L. A. and Kær , S. K. 2011 . Chemistry and radiation in oxy–fuel combustion: A computational fluid dynamics modeling study . Fuel , 90 : 2519 – 2529 . doi: 10.1016/j.fuel.2011.03.023
  • Frassoldati , A. , Cuoci , A. , Faravelli , T. , Ranzi , E. , Candusso , C. and Tolazzi , D. 2009 . Simplified kinetic schemes for oxy–fuel combustion 1st International Conference on Sustainable Fossil Fuels for Future Energy , Rome : 6–10 July 2009 .
  • Poinsot , T. and Veynante , D. 2012 . Theoretical and Numerical Combustion, 3rd ed. , Toulouse , , France : Poinsot & Veynante . Available at http://elearning.cerfacs.fr/combustion/onlinePoinsotBook/buythirdedition/index.php
  • Breussin , F. , Lallemant , N. and Weber , R. 2000 . Computing of oxy–natural gas flames using both a global combustion scheme and a chemical equilibrium procedure . Combust. Sci. Technol. , 160 : 369 – 397 . doi: 10.1080/00102200008935808
  • Brink , A. , Hupa , M. , Breussin , F. , Lallemant , N. and Weber , R. 2000 . Modeling of oxy–natural gas combustion chemistry . J. Propulsion & Power , 16 : 609 – 614 . doi: 10.2514/2.5616
  • Kim , G. and Kim , Y. 2005 . Non-adiabatic flamelet modeling for combustion processes of oxy–natural gas flame . J. Mech. Sci. Technol. , 19 : 1781 – 1789 . doi: 10.1007/BF02984190
  • Kim , G. , Kim , Y. and Joo , Y. J. 2009 . Conditional moment closure for modeling combustion processes and structure of oxy–natural gas flame . Energy Fuels , 23 : 4370 – 4377 . doi: 10.1021/ef9004829
  • Wang , A. and Modest , M. F. 2006 . Photon Monte Carlo simulation for radiative transfer in gaseous media represented by discrete particle fields . J. Heat Transfer , 128 : 1041 – 1049 . doi: 10.1115/1.2345431
  • Wang , A. and Modest , M. F. 2007 . An adaptive emission model for Monte Carlo simulations in highly inhomogeneous media represented by stochastic particle fields . J. Quant. Spectrosc. Radiat. Transfer , 104 : 288 – 296 . doi: 10.1016/j.jqsrt.2006.07.023
  • Gupta , A. 2011 . Large-eddy simulation of turbulent flames with radiation heat transfer , University Park , PA : Ph.D. diss. Pennsylvania State University .
  • Glarborg , P.  and Bentzen , L. 2008 . Chemical effects of a high CO2 concentration in oxy–fuel combustion of methane . Energy Fuels , 22 : 291 – 296 . doi: 10.1021/ef7005854
  • Liu , F. , Guo , H. and Smallwood , G. J. 2003 . The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames . Combust. Flame , 133 : 495 – 497 . doi: 10.1016/S0010-2180(03)00019-1
  • Bowman , C. T. , Hanson , R. K. , Davidson , D. F. , Gardiner , W. C. , Lissianski , V. , Smith , G. P. , Golden , D. M. , Frenklach , M. and Goldenberg , M. 1995 . GRI-Mech 2.11 . Available at http://www.me.berkeley.edu/gri_mech
  • Li , J. , Zhao , Z. , Kazakov , A. , Chaos , M. , Dryer , F. L. and Scire , J. J. Jr . 2007 . A comprehensive kinetic mechanism for CO . CH2O, CH3OH combustion, Int. J. Chem. Kinet. , 39 : 109 – 136 . doi: 10.1002/kin.20218
  • James , S. , Anand , M. S. , Razdan , M. K. and Pope , S. B. 2001 . In situ detailed chemistry calculations in combustor flow analyses . J. Eng. Gas Turbines Power , 123 : 747 – 756 . doi: 10.1115/1.1384878
  • Jaishree , J. and Haworth , D. C. 2012 . Comparisons of Lagrangian and Eulerian PDF methods in simulations of nonpremixed turbulent jet flames with moderate-to-strong turbulence–chemistry interactions . Combust. Theory Modell. , 16 : 435 – 463 . doi: 10.1080/13647830.2011.633349
  • Subramaniam , S. and Pope , S. B. 1998 . A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees . Combust. Flame , 115 : 487 – 514 . doi: 10.1016/S0010-2180(98)00023-6
  • OpenFOAM: The open source CFD toolbox . Available at http://www.openfoam.org.
  • Muradoglu , M. , Jenny , P. , Pope , S. B. and Caughey , D. A. 1999 . A consistent hybrid finite volume/particle method for the PDF equations of turbulent reactive flows . J. Comput. Phys. , 154 : 342 – 371 . doi: 10.1006/jcph.1999.6316
  • Muradoglu , M. , Pope , S. B. and Caughey , D. A. 2001 . The hybrid method for the PDF equations of turbulent reactive flows: Consistency conditions and correction algorithms . J. Comput. Phys. , 172 : 841 – 878 . doi: 10.1006/jcph.2001.6861
  • Modest , M. F. 2003 . Radiative Heat Transfer , Academic Press : 2nd ed. .
  • Wang , A. and Modest , M. F. 2004 . Importance of combined Lorentz–Doppler broadening in high-temperature radiative heat transfer applications . J. Heat Transfer , 126 : 858 – 861 . doi: 10.1115/1.1798951
  • Rothman , L. S. , Gordon , I. E. , Barber , R. J. , Dothe , H. , Gamache , R. R. , Goldman , A. , Perevalov , V. I. , Tashkun , S. A. and Tennyson , J. 2010 . HITEMP, the high-temperature molecular spectroscopic database . J. Quant. Spectrosc. Radiat. Transfer , 111 : 2139 – 2150 . doi: 10.1016/j.jqsrt.2010.05.001
  • Saljnikov , A. , Komatina , M. , Manovic , V. , Gojak , M. and Goricanec , D. 2009 . Investigation on thermal radiation spectra of coal ash deposits . Int. J. Heat Mass Transfer , 52 : 2871 – 2884 . doi: 10.1016/j.ijheatmasstransfer.2008.12.007
  • Lu , L. and Pope , S. B. 2009 . An improved algorithm for in situ adaptive tabulation . J. Comput. Phys. , 228 : 361 – 386 . doi: 10.1016/j.jcp.2008.09.015
  • Bhattacharjee , S. 2012 . PDF modeling of high-pressure turbulent spray combustion under diesel-engine-like conditions , PA : Ph.D. diss., Pennsylvania State University, University Park .
  • Curl , R. L. 1963 . Dispersed phase mixing. I. Theory and effects in simple reactors . AIChE J. , 9 : 175 – 181 . doi: 10.1002/aic.690090207

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.