418
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Impact of acoustic pressure on autoignition and heat release

, &
Pages 1-31 | Received 14 Oct 2012, Accepted 30 Apr 2013, Published online: 27 Jan 2014

References

  • R. Cabra, J.Y. Chen, R. Dibble, A. Karpetis, R. Barlow, Lifted methane–air jet flames in a vitiated coflow, Combust. Flame 143 (2005), pp. 491–506.
  • C. Markides E. Mastorakos, An experimental study of hydrogen autoignition in a turbulent co-flow of heated air, Proc. Combust. Inst. 30 (2005), . pp. 883–891.
  • R. Gordon, A. Masri, S. Pope, G. Goldin, A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow, Combust. Theory Model. 11 (2007), . pp. 351–376.
  • A. Ni, W. Polifke, F. Joos, Ignition delay time modulation as a contribution to thermoacoustic instability in sequential combustion, in Proceedings of ASME Turbo Expo 2000, International Gas Turbine and Aeroengine Congress & Exhibition (IGTI), ASME, Munich, Germany, . 8–11 May 2000, Paper 2000-GT-0103.
  • T. Wada, F. Jarmolowitz, D. Abel, N. Peters, An instability of diluted lean methane/air combustion: Modeling and control, Combust. Sci. Technol. 183 (2011), . pp. 1–19.
  • S. Ducruix, T. Schuller, D. Ducrox, S. Candel, Combustion dynamics and instabilities: Elementary coupling and driving mechanisms, J. Propulsion & Power 19 (2003), . pp. 722–734.
  • A. Huber W. Polifke, Dynamics of practical premix flames – Part I: Model structure and identification, Int. J. Spray Combust. Dynam. 1 (2009), . pp. 199–229.
  • S. Park, A. Annaswamy, A. Ghoniem, Heat release dynamics modeling of kinetically controlled burning, Combust. Flame 128 (2002), . pp. 217–231.
  • P. Clavin, P. Pelcé, and L. He, One-dimensional vibratory instability of planar flames propagating in tubes, J. Fluid Mech. 216 (1990), . pp. 299–322.
  • A.C. McIntosh, The linearised response of the mass burning rate of a premixed flame to rapid pressure changes, Combust. Sci. Technol. 91 (1993), . pp. 329–346.
  • R. Rook, L.P.H. Goey, L.M.T. Somers, K.R.A.M. Schreel, R. Parchen, Response of burner-stabilized flat flames to acoustic perturbations, Combust. Theory Model. 6 (2002), . pp. 223–242.
  • X. Wu, M. Wang, P. Moin, N. Peters, Combustion instability due to the nonlinear interaction between sound and flame, J. Fluid Mech. 497 (2003), . pp. 23–53.
  • H. Schmidt C. Jimenez, Numerical study of the direct pressure effect of acoustic waves in planar premixed flames, Combust. Flame 157 (2010), . pp. 1610–1619.
  • A. Laverdant, L. Gouarin, D. Thévenin, Interaction of a Gaussian acoustic wave with a turbulent non-premixed flame, Combust. Theory Model. 11 (2007), . pp. 585–602.
  • M. Zellhuber, V. Bellucci, B. Schuermans, W. Polifke, Modelling the impact of acoustic pressure waves on auto-ignition flame dynamics, in Proceedings of the 5th European Combustion Meeting (ECM2011), British Section of the Combustion Institute, Cardiff, UK, . 28 June–1 July 2011.
  • L. Schmidt, The Engineering of Chemical Reactions, . 1st ed., Oxford University Press, 1998.
  • M. Janus and G. Richards, Results of a model for premixed combustion oscillations, in Proceedings of the 1996 International Symposium on Combustion in Industry, American Flame Research Committee, Baltimore, MD, . 30 September–2 October 1996.
  • T. Lieuwen, Y. Neumeier, B. Zinn, The role of unmixedness in chemical kinetics in driving combustion instabilities in lean premix combustors, Combust. Sci. Technol. 135 (1998), . pp. 193–211.
  • M. Zellhuber, C. Meraner, R. Kulkarni, B. Schuermans, W. Polifke, Large eddy simulation of flame response to transverse acoustic excitation in a model reheat combustor, J. Engng – Gas Turbines & Power, to be published, 2013.
  • D. Goodwin, Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. [Online]. Caltech, Pasadena, CA. Available at . http://code.google.com/p/cantera.
  • E.L. Petersen, D.M. Kalitan, S. Simmons, G. Bourque, H.J. Curran, J.M. Simmie, Methane/propane oxidation at high pressures: Experimental and detailed chemical kinetic modeling, Proc. Combust. Inst. 31 (2007), . pp. 447–454.
  • R. Kulkarni W. Polifke, LES of Delft-Jet-In-Hot-Coflow (DJHC) with tabulated chemistry and stochastic fields combustion model, Fuel Process. Technol. 107 (2013), . pp. 138–146.
  • L.J. Spadaccini M.B. Colket, Ignition delay characteristics of methane fuels, Prog. Energy Combust. Sci. 20 (1994), . pp. 431–460.
  • M. Zellhuber, L.T.-W. Chong, W. Polifke, Non-linear flame response at small perturbation amplitudes – consequences for analysis of thermoacoustic instabilities, in Proceedings of the 5th European Combustion Meeting (ECM2011), British Section of the Combustion Institute, Cardiff, UK, 28 June–1 July 2011.
  • G. Bansal, H.G. Im, S.R. Lee, Auto-ignition of a homogeneous hydrogen–air mixture subjected to unsteady temperature fluctuations, Combust. Theory Model. 13 (2009), . pp. 413–425.
  • MathWorks, MATLAB® version R2011b. . Available at . http://www.mathworks.co.uk/products/.
  • E. Deuker, Ein Beitrag zur Vorausberechnung des akustischen Stabilitätsverhaltens von Gasturbinen-Brennkammern mittels theoretischer und experimenteller Analyse von Brennkammerschwingungen, Ph.D. diss., RWTH Aachen, Deutschland, 1994.
  • A.P. Dowling, The calculation of thermoacoustic oscillations, J. Sound Vibration 180 (1995), . pp. 557–581.
  • B.B.H. SchuermansW. Polifke, C.O. PaschereitModeling transfer matrices of premixed flames and comparison with experimental results, in Proceedings of ASME Turbo Expo 1999, . International Gas Turbine and Aeroengine Congress & Exhibition (IGTI), ASME, Indianapolis, IN, 7–9 June 1999, Paper 99-GT-132.
  • U. Krüger, J. Hüren, S. Hoffmann, W. Krebs, P. Flohr, D. Bohn, Prediction and measurement of thermoacoustic improvements in gas turbines with annular combustion systems, in Proceedings of the ASME Turbo Expo 2000, . International Gas Turbine and Aeroengine Congress & Exhibition (IGTI), ASME, Munich, Germany, 8–11 May 2000, . Paper 2000-GT-0084.
  • A.P. Dowling, Nonlinear self-excited oscillations of a ducted flame, J. Fluid Mech. 346 (1997), . pp. 271–290.
  • N. Noiray, D. Durox, T. Schuller, S. Candel, A unified framework for nonlinear combustion instability analysis based on the flame describing function, J. Fluid Mech. 615 (2008), . pp. 139–167.
  • J. Moeck, M. Oevermann, R. Klein, C. Paschereit, H. Schmidt, A two-way coupling for modeling thermoacoustic instabilities in a flat flame Rijke tube, Proc. Combust. Inst. 32 (2009), . pp. 1199–1207.
  • F. Selimefendigil W. Polifke, A frequency domain system model with coupled modes for limit cycle prediction of thermoacoustic systems, Int. J. Spray Combust. Dynam. 3 (2011), . pp. 303–330.
  • T. Sattelmayer, Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations, J. Engng – Gas Turbines & Power 125 (2003), . pp. 11–19.
  • E. Mastorakos, Ignition of turbulent non-premixed flames, Prog. Energy Combust. Sci. 35 (2009), . pp. 57–97.
  • J.H. Chen, E.R. Hawkes, R. Sankaran, S.D. Mason, H.G. Im, Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities – Part I: Fundamental analysis and diagnostics, Combust. Flame 145 (2006), . pp. 128–144.
  • E.R. Hawkes, R. Sankaran, P.P. Pébay, J.H. Chen, Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities – Part II: Parametric study, Combust. Flame 145 (2006), . pp. 145–159.
  • R. Kulkarni, M. Zellhuber, W. Polifke, LES based investigation of autoignition in turbulent co-flow configurations, Combust. Theory Model. 17 (2013), . pp. 224–259.
  • M. Zellhuber, J. Schwing, B. Schuermans, T. Sattelmayer, W. Polifke, Experimental and numerical investigation of thermoacoustic sources related to high-frequency instabilities, Int. J. Spray Combust. Dynam., . submitted for publication, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.