472
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Global reaction mechanism for the auto-ignition of full boiling range gasoline and kerosene fuels

, &
Pages 1020-1052 | Received 11 Sep 2012, Accepted 27 Jun 2013, Published online: 11 Sep 2013

References

  • G. Shibata, K. Oyama, T. Urushihara, and T. Nakano, Correlation of Low Temperature Heat Release with Fuel Composition and HCCI Engine Combustion, SAE 2005-01-0138, 2005.
  • S. Tanaka, F. Ayala, J.C. Keck, and J.B. Heywood, Two-stage ignition in HCCI combustion and HCCI control by fuels and additives, Comb. Flame 132 (2003), pp. 219–239.
  • J.T. Farell and B.G. Bunting, Fuel composition effects at constant RON and MON in an HCCI engine operating with negative valve overlap, . SAE 2006-01-3275, 2006.
  • L. Starck, B. Lecointe, L. Forti, N. Jeuland, Impact of fuel characteristics on HCCI combustion: Performance and emissions, Fuel 89 (2010), pp. 3069–3077.
  • H. Liu, M. Yao, B. Zhang, and Z. Zheng, Influence of fuel and operating conditions on combustion characteritics of a homogeneous charge compression ignition engine, Energy & Fuels 23 (2009), pp. 1422–1430.
  • J. Li, H. Zhao, and N. Brouzos, CAI combustion with methanol and ethanol in an air assisted direct injection SI Engine, SAE Int. J. Fuels Lunbr. 1 (2008), pp. 1110–1119.
  • J.E. Dec and M. Sjöberg, Isolating the Effects of Fuel Chemistry on Combustion Phasing in an HCCI Engine and the Potentail of Fuel Stratification for Ignition Control, . SAE 2004-01-0557, 2004.
  • M. Sjöberg and J.E. Dec, Smoothing HCCI Heat Release Rates Using Partial Fuel Stratification with Two Stage Ignition Fuels, . SAE 2006-01-0629, 2006.
  • J.C.G. Andrae and R.A. Head, HCCI experiments with gasoline surrogate fuels modeled by a semidetailed chemical kinetic model, Comb. Flame 156 (2009), pp. 842–851.
  • F. Battin-Leclerc, Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates, Progr. Energy Combust. Sci. 34 (2008), pp. 440–498.
  • Y. Ra and R.D. Reitz, A combustion model for IC engine combustion simulations with multi-component fuels, Comb. Flame 158 (2011), pp. 69–90.
  • J.T. Farell, N.P. Cernansky, F.L. Dryer, D.G. Friend, C.A. Hergart, C.K. Law, R.M. McDavid, C.J. Mueller, A.K. Patel, and H. Pitsch, Development of an Experimental Database and Kinetic Models for Surrogate Diesel Fuels, . SAE 2007-01-0201, 2007.
  • W.J. Pitz, N.P. Cernansky, F.L. Dryer, F.N. Egolfopoulos, J.T. Farrell, D.G. Friend, and H. Pitsch, Development of an experimental database and chemical kinetic models for surrogate gasoline fuels, . SAE 2007-01-0175, 2007.
  • Y. Shi, R.P. Hessel, and R.D. Reitz, An adaptive multi-grid chemistry (AMC) model for efficient simulation of HCCI and DI engine combustion, Combust. Theory Model. 13 (2009), pp. 83–104.
  • S.B. Pope, Turbulent Flows, Cambridge University Press, 2000.
  • F. Bottone, A. Kronenburg, A.J. Marquis, A.D. Gosman, and E. Mastorakos, Large Eddy Simulation of Diesel Engine In-cylinder Flow, Flow Turbul. Combust. (2011), pp. 1–21.
  • A.X. Sengissen, J.F. Van Kampen, R.A. Huls, G.G.M. Stoffels, J.B.W. Kok, and T.J. Poinsot, LES and experimental studies of cold an reacting flow in a swirled partially premixed burner with and without fuel modulation, Comb. Flame 150 (2007), pp. 40–53.
  • L. Selle, G. Lartigue, T. Poinsot, R. Koch, K.-U. Schildmacher, W. Krebs, B. Prade, P. Kaufmann, and D. Veynante, Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes, Comb. Flame 137 (2004), pp. 489–505.
  • P. Schmitt, T. Poinsot, B. Schuermans, and K.P. Geigle, Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner, J. Fluid Mech. 570 (2007), pp. 17–46.
  • A. Triantafyllidis, E. Mastorakos, and R.L.G.M. Eggels, Large Eddy Simulations of forced ignition of a non-premixed bluff-body methane flame with Conditional Moment Closure, Comb. Flame 156 (2009), pp. 2328–2345.
  • W.P. Jones and A. Tyliszczak, Large Eddy Simulation of Spark Ignition in a Gas Turbine Combustor, Flow Turbul. Combust. 85 (2010), pp. 711–734.
  • W.P. Jones and R.P. Lindstedt, Global reaction schemes for hydrocarbon combustion, Comb. Flame 73 (1988), pp. 233–249.
  • E. Fernandez-Tarrazo, A.L. Sánchez, A. Liñán, and F.A. Williams, A simple one-step chemistry model for partially premixed hydrocarbon combustion, Comb. Flame 147 (2006), pp. 32–38.
  • B. Franzelli, E. Riber, M. Sanjosé, and T. Poinsot, A two-step chemical scheme for kerosene-air premixed flames, Comb. Flame 157 (2010), pp. 1364–1373.
  • C.K. Westbrook and F.L. Dryer, Simplified Reaction Mechanisms for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol. (1981), pp. 31–43.
  • E.M. Sazhina, M.R. Heikal, and C.J. Marooney, The Shell autoignition model: Applications to gasoline and diesel fuels, Fuel 78 (1999), pp. 389–401.
  • StarCD v4.12 © cd-adapco, 2010.
  • A. Patel, S. Kong, and R. Reitz, Development and validation of a reduced reaction mechanism for HCCI engine simulations, . SAE 2004-01-0558, 2004.
  • R.A. Cox and J.A. Cole, Chemical aspects of the autoignition of Hydrocarbon-Air mixtures, Comb. Flame 60 (1985), pp. 109–23.
  • H. Li, D. Miller, and N. Cernansky, Development of a Reduced Chemical Kinetic Model for Prediction of Preignition Reactivity and Autoignition of Primary Reference Fuels, . SAE 960498, 1996.
  • V. Hamosfakidis and R.D. Reitz, Optimization of a hydrocarbon fuel ignition model for two single component surrogates of diesel fuel, Comb. Flame 132 (2003), pp. 433–450.
  • D. Struckmeier, D. Tsuru, S. Kawauchi, and H. Tajima, Multi-Component Modeling of Evaporation, Ignition and Combustion Processes of Heavy Residual Fuel Oil, . SAE 2009-01-2677, 2009.
  • B. Natarajan and F.V. Bracco, On Multidimensional Modeling of Auto-Ignition in Spark-Ignition Engines, Comb. Flame 57 (1984), pp. 179–197.
  • U.C. Müller, N. Peters, and A. Liñán, Global kinetics for n-heptane ignition at high pressures, in Twenty-Fourth Symposium (International) on Combustion/The Combustion Institute, 1992, pp. 777–784.
  • A. Schreiber, A. Sadat Sakak, A. Lingens, and J.F. Griffiths, A reduced thermokinetic model for the autoignition of fuels with variable octane ratings, in Twenty-Fifth Symposium (International) on Combustion, 1994, pp. 933–940.
  • A. Bourdon, G. Rymer, and R. Wanker, Optimization of a 5-Step Kinetic Scheme for HCCI-applications, . SAE 2004-01-0559, 2004.
  • D. Bradley, G.T. Kalghatgi, C. Morley, P. Snowdon, and J. Yeo, Cars temperature measurements and the cyclic dispersion of knock in spark ignition engines, in Twenty-Fifth Symposium (International) on Combustion/The Combustion Institute, 1994, pp. 125–133.
  • J. Zheng, D.L. Miller, and N.P. Cernansky, A global reaction model for the HCCI Combustion process, . SAE 2004-01-2950, 2004.
  • A. Vandersickel, Y.M. Wright, and K. Boulouchos, A global Reaction Model for Practical Fuels in HCCI Applications, in THIESEL 2010 Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines, Valencia, Spain, 2010.
  • T. Tsurushima, A new skeletal PRF kinetic model for HCCI combustion, in Proceedings of the Combustion Institute, 2009, pp. 2835–2841.
  • S.S. Ahmed, F. Mauss, G. Moréac, and T. Zeuch, A comprehensive and compact n-heptane oxidation model derived using chemical lumping, Phys. Chem. Chem. Phys. 9 (2007), pp. 1107–1126.
  • H.J. Curran, P. Gaffuri, W.J. Pitz, and C.K. Westbrook, A Comprehensive Modeling Study of n-Heptane Oxidation, Comb. Flame 114 (1998), pp. 149–177.
  • M. Yao, Z. Zheng, and H. Liu, Progress and recent trends in homogeneous charge compression ignition (HCCI) engines, Progr. Energy Combust. Sci. 35 (2009), pp. 398–437.
  • J. Zheng, W. Yang, D. Miller, and N. Cernansky, A skeletal chemical kinetic model for the HCCI combustion process, . SAE 2002-01-0423, 2002.
  • J. Biet, M.H. Hakka, V. Warth, P.A. Glaude, and F. Battin-Leclerc, Experimental and Modeling Study of the Low-Temperature Oxidation of Large Alkanes, in Energy & Fuels, American Chemical Society, 2008, pp. 2258–2269.
  • N. Peters, G. Paczko, R. Seiser, and K. Seshadri, Temperature cross-over and non-thermal runaway at two-stage ignition of n-heptane, Comb. Flame 128 (2002), pp. 38–59.
  • M.P. Halstead, L.J. Kirsch, A. Prothero, and C.P. Quinn, A mathematical model for Hydrocarbon Autoignition at High Pressures, in Proceedings of the Royal Society of London (Series A, Math. and Phys. Sciences), 1975, pp. 515–538.
  • P. Dagaut and M. Cathonnet, The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling, Progr. Energy Combust. Sci. 32 (2006), pp. 48–92.
  • I. Glassman, Combustion, third edition, Academic Press, 1996.
  • A. Vandersickel, M. Hartmann, K. Vogel, Y.M. Wright, M. Fikri, R. Starke, C. Schulz, and K. Boulouchos, The autoignition of practical fuels at HCCI conditions: High-pressure shock tube experiments and phenomenological modeling, Fuel 93 (2012), pp. 492–501.
  • H. Machrafi and S. Cavadias, Three-stage autoignition of gasoline in an HCCI engine: An experimental and chemical kinetic modeling investigation, Comb. Flame 155 (2008), pp. 557–570.
  • J.J. Hernandez, J. Sanz-Argent, J. Benajes, and S. Molina, Selection of a diesel fuel surrogate for the prediction of auto-ignition under HCCI engine conditions, Fuel 87 (2008), pp. 655–665.
  • P.N. Brown, G.D. Byrne, and A.C. Hindmarsh, VODE: A Variable-Coefficient ODE Solver, SIAM J. Sci. and Stat. Comput. 10 (1989), pp. 1038–1051.
  • M. Hartmann and R. Starke, Kraftstoffkenzahlen - TP1 Stosswellenrohr: Untersuchungen der Zündverzugszeiten im Stosswellenrohr, FVV Abschlussbericht Heft 904 (2010).
  • H.J. Curran, P. Gaffuri, W.J. Pitz, and C.K. Westbrook, n-Heptane detailed mechanism, in http://www-pls.llnl.gov/?url=science_and_technology-chemistry-combustion, Review and release date: May 19, 2004, 2002.
  • C. Chryssakis, and L. Kaiktsis, Optimization of Injection Characteristics in a Large Marine Diesel Engine Using Evolutionary Algorithms, . SAE 2009-01-1448, 2009.
  • The Mathworks, Inc. 1990-2009, Matlab Optimization Toolbox™  User's Guide, 2009.
  • G. Flowday, A New Functional Global Auto-ignition Model for Hydrocarbon Fuels - Part 2 of 2: Model Formulation, Development and Performance Assessment, . SAE 2010-01-2169, 2010.
  • A. Vandersickel, Y.M. Wright, K. Boulouchos, S. Beck, and M. Bargende, Experimental Validation of a Global Reaction Model for a Range of Gasolines and Kerosenes under HCCI Conditions, . SAE Technical Paper 2011-24-0024, 2011.
  • E.E. O’Brien and T.-L. Jiang, The conditional dissipation rate of an initially binary scalar in homogeneous turbulence, Phys. Fluids (1991).
  • Y.M. Wright, O.N. Margari, K. Boulouchos, G. De Paola, and E. Mastorakos, Experiments and Simulations of n-Heptane Spray Auto-Ignition in a Closed Combustion Chamber at Diesel Engine Conditions, Flow Turbul. Combust. 84 (2010), pp. 49–78.
  • E. Mastorakos, Ignition of turbulent non-premixed flames, Progr. Energy Combust. Sci. 35 (2009), pp. 57–97.
  • Y.M. Wright, G. De Paola, K. Boulouchos, and E. Mastorakos, Simulations of spray autoignition and flame establishment with two-dimensional CMC, Comb. Flame 143 (2005), pp. 402–419.
  • O. Colin and A. Benkenida, The 3-Zones Extended Coherent Flame Model (Ecfm3z) for Computing Premixed/Diffusion Combustion, Oil & Gas Science and Technology 59 (2004), pp. 593–609.
  • J.C. Hewson, Pollutant Emissions from Non-premixed Hydrocarbon Flames, PhD Thesis, University of California, 1997.
  • G. Bikas, Kinetic Mechanisms for Hydrocarbon Ignition, PhD Thesis, RWTH Aachen, 2001.
  • S. Liu, J.C. Hewson, J.H. Chen, and H. Pitsch, Effects of strain rate on high-pressure non-premixed n-heptane autoignition in counterflow, Comb. Flame 137 (2004), pp. 320–339.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.