437
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Uncertainty quantification in the catalytic partial oxidation of methane

, , &
Pages 1067-1095 | Received 10 Dec 2012, Accepted 10 Jul 2013, Published online: 20 Sep 2013

References

  • M.L. Perry, T.F. Fuller, A historical perspective of fuel cell technology in the 20th century, J. Electrochem. Soc. 149 (2002), pp. S59–S67.
  • G. Groppi, A. Beretta, and E. Tronconi, Monolithic catalysis for gas-phase syntheses of chemicals, in Structured Catalysts and Reactors, A. Cybulski and J.A. Moulijn, eds., CRC Press, Boca Raton, 2006, pp. 243–310.
  • D.A. Hickman, L.D. Schmidt, Synthesis gas formation by direct oxidation of methane over Pt monoliths, J. Catal. 138 (1992), 267–282.
  • D.A. Hickman, E.A. Haupfear, L.D. Schmidt, Synthesis gas formation by direct oxidation of methane over Rh monoliths, Catal. Lett. 17 (1993), pp. 223–237.
  • D. Dalle Nogare, N.J. Degenstein, R. Horn, P. Canu, L.D. Schmidt, Modeling spatially resolved profiles of methane partial oxidation on a Rh foam catalyst with detailed chemistry, J. Catal. 258 (2008), pp. 131–142.
  • A. Beretta, G. Groppi, M. Lualdi, I. Tavazzi, P. Forzatti, Experimental and modeling analysis of methane partial oxidation: transient and steady-state behaviour of Rh-coated honeycomb monoliths, Ind. Eng. Chem. Res. 48 (2009), pp. 3825–3836.
  • A. Donazzi, M. Maestri, B.C. Michael, A. Beretta, P. Forzatti, G. Groppi, E. Tronconi, L.D. Schmidt, D.G. Vlachos, Microkinetic modeling of spatially resolved autothermal CH4 catalytic partial oxidation experiments over Rh-coated foams, J. Catal. 275 (2010), pp. 270–279.
  • D. Scognamiglio, L. Russo, P.L. Maffettone, L. Salemme, M. Simeone, S. Crescitelli, Modelling and simulation of a catalytic autothermal methane reformer with Rh catalyst, Int. J. Hydrogen Energy 37 (2012), pp. 263–275.
  • B.D. Phenix, J.L. Dinaro, M.A. Tatang, J.W. Tester, J.B. Howard, G.J. McRae, Incorporation of parametric uncertainty into complex kinetic mechanisms: application of hydrogen oxidation in supercritical water, Combust. Flame 112 (1998), pp. 132–146.
  • H. Cheng, A. Sandu, Efficient uncertainty quantification with the polynomial chaos method for stiff systems, Math. Comput. Simulat. 79 (2009), pp. 3278–3295.
  • M.T. Reagan, H.N. Najm, R.G. Ghanem, O.M. Knio, Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection, Combust. Flame 132 (2003), pp. 545–555.
  • L. Mathelin, M.Y. Hussaini, T.A. Zhang, Stochastic approaches to uncertainty quantification in CFD simulations, Numer. Algorithms 38 (2005), pp. 209–236.
  • D. Xiu, G.E. Karniadakis, Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys. 187 (2003), pp. 137–167.
  • M.T. Reagan, H.N. Najm, B.J. Debusschere, O.P. Le Maître, O.M. Knio, R.G. Ghanem, Spectral stochastic uncertainty quantification in chemical systems, Combust. Theory Model. 8 (2004), pp. 607–632.
  • M. Dodson, G.T. Parks, Robust aerodynamic design optimization using polynomial chaos, J. Aircr. 46 (2009), pp. 635–646.
  • M.A.A. Mendes, J.M.C. Pereira, J.C.F. Pereira, Calculation of premixed combustion within inert porous media with model parametric uncertainty quantification, Combust. Flame 158 (2011), pp. 466–476.
  • M.A.A. Mendes, J.M.C. Pereira, and J.C.F. Pereira, Parametric uncertainty quantification in modeling methane thermal partial oxidation within inert porous media, in Proceedings of the Vth European Conference on Computational Fluid Dynamics (ECCOMAS CFD), Lisbon, 14–17 June, 2010, J.C.F. Pereira, A. Sequeira and J.M.C. Pereira, eds.
  • M.S. Eldred, J. Burkardt, Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification, AIAA Paper 0976, 2009.
  • M.A.A. Mendes, S. Ray, J.M.C. Pereira, J.C.F. Pereira, D. Trimis, Quantification of uncertainty propagation due to input parameters for simple heat transfer problems, Int. J. Therm. Sci. 60 (2012), pp. 94–105.
  • O.P. Le Maître, O.M. Knio, H.N. Najm, R.G. Ghanem, A stochastic projection method for fluid flow – I: Basic formulation, J. Comput. Phys. 173 (2001), pp. 481–511.
  • O.P. Le Maître, M.T. Reagan, H.N. Najm, R.G. Ghanem, O.M. Knio, A stochastic projection method for fluid flow – II: Random process, J. Comput. Phys. 181 (2002), pp. 9–44.
  • H.N. Najm, Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics, Annu. Rev. Fluid Mech. 41 (2009), pp. 35–52.
  • J.C. Slaa, R.J. Berger, G.B. Marin, Partial oxidation of methane to synthesis gas over Rh/α–Al2O3 at high temperatures, Catal. Lett. 43 (1997), pp. 63–70.
  • C.T. Goralski Jr, R.P. O’Connor, L.D. Schmidt, Modeling homogeneous and heterogeneous chemistry in the production of syngas from methane, Chem. Engng Sci. 55 (2000), pp. 1357–1370.
  • A. Beretta, A. Donazzi, D. Livio, M. Maestri, G. Groppi, E. Tronconi, P. Forzatti, Optimal design of a CH4 CPO-reformer with honeycomb catalyst: combined effect of catalyst load and channel size on the surface temperature profile, Catal. Today 171 (2011), pp. 79–83.
  • S. Mazumder M. Grimm, Numerical investigation of radiation effects in monolithic catalytic combustion reactors, Int. J. Chem. React. Eng. 9 (2011), pp. 118. Available at http://www.bepress.com/ijcre/vol9/A44
  • A. Schneider, J. Mantzaras, P. Jansohn, Experimental and numerical investigation of the catalytic partial oxidation of CH4/O2 mixtures diluted with H2O and CO2 in a short contact time reactor, Chem. Engng Sci. 61 (2006), pp. 4634–4649.
  • S. Eriksson, A. Schneider, J. Mantzaras, M. Wolf, S. Järås, Experimental and numerical investigation of supported rhodium catalysts for partial oxidation of methane in exhaust gas diluted reaction mixtures, Chem. Eng. Sci. 62 (2007), pp. 3991–4011.
  • B.T. Schädel, M. Duisberg, O. Deutschmann, Steam reforming of methane, ethane, propane, butane, and natural gas over a rhodium-based catalyst, Catal. Today 142 (2009), pp. 42–51.
  • G. Incera Garrido, F.C. Patcas, S. Lang, B. Kraushaar-Czarnetzki, Mass transfer and pressure drop in ceramic foams: a description for different pore sizes and porosities, Chem. Engng Sci. 63 (2008), pp. 5202–5217.
  • L. Kunz, L. Maier, S. Tischer, and O. Deutschmann, Modeling the rate of heterogeneous reactions, in Modeling and Simulation of Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System, O. Deutschmann, ed., Wiley-VCH, Weinheim, Germany, 2011, pp. 113–148.
  • R.J. Kee, M.E. Coltrin, P. Glarborg, Chemically reacting flow: theory and practice, Wiley-Interscience, New Jersey, 2003.
  • O. Deutschmann, R. Schwiedernoch, L.I. Maier, and D. Chatterjee, Natural Gas Conversion in Monolithic Catalysts: Interactions of Chemical Reactions and Transport Phenomena, Natural Gas Conversion VI, Studies in Surface Science and Catalysis 136, E. Iglesia, J.J. Spivey, and T.H. Fleisch, eds., Elsevier, 2001, pp. 251–258.
  • M. Hartmann, L. Maier, H.D. Minh, O. Deutschmann, Catalytic partial oxidation of iso-octane over rhodium catalysts: an experimental, modeling, and simulation study, Combust. Flame 157 (2010), pp. 1771–1782.
  • M.F. Modest, Radiative Heat Transfer, McGraw-Hill, New York, 1993.
  • M.E. Larsen, J.R. Howell, Least-squares smoothing of direct-exchange areas in zonal analysis, J. Heat Trans. 108 (1986), pp. 239–242.
  • M.H.N. Naraghi, B.T.F. Chung, A unified matrix formulation for the zone method: a stochastic approach, Int. J. Heat Mass Trans. 28 (1985), pp. 245–251.
  • A.L. Boheman, Radiation heat transfer in catalytic monoliths, AIChE J. 44 (1998), pp. 2745–2755.
  • S. Karagiannidis, J. Mantzaras, Numerical investigation on the start-up of methane-fueled catalytic microreactors, Combust. Flame 157 (2010), pp. 1400–1413.
  • R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, PREMIX: a FORTRAN program for modeling steady laminar one-dimensional premixed flames, . SAND85-8240, Sandia National Laboratories, 1985.
  • R.J. Kee, F.M. Rubley, E. Meeks, CHEMKIN-II: a FORTRAN chemical kinetic package for the analysis of gas-phase chemical kinetics, . SAND89-8009, Sandia National Laboratories, 1989.
  • R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller, A FORTRAN computer code package for the evaluation of gas-phase multicomponent transport properties, . SAND86-8246, Sandia National Laboratories, 1986.
  • G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr, V.V. Lissianski, and Z. Qin, GRI-Mech 3.0. . Available at http://www.me.berkeley.edu/gri_mech/.
  • D.G. Goodwin, An open-source, extensible software suite for CVD process simulation, in Proceedings of CVD XVI and EuroCVD Fourteen, 27 April–2 May 2003, Paris, M. D. Allendorf, F. Maury, and F. Teyssandier, eds., 2003, The Electrochemical Society pp. 155–162.
  • R.G. Munro, Evaluated material properties for a sintered α-Alumina, J. Am. Ceram. Soc. 80 (1997), pp. 1919–1928.
  • D. Edouard, M. Lacroix, C.P. Huu, F. Luck, Pressure drop modeling on solid foam: state-of-the-art correlation, Chem. Eng. J. 144 (2008), pp. 299–311.
  • J.G. Fourie, J.P. Du Plessis, Effective and coupled thermal conductivities of isotropic open-cellular foams, AIChE J. 50 (2004), pp. 547–556.
  • X. Fu, R. Viskanta, J.P. Gore, A model for the volumetric radiation characteristics of cellular ceramics, Int. Comm. Heat Mass Trans. 24 (1997), pp. 1069–1082.
  • J.E.P. Navalho, I. Frenzel, A. Loukou, J.M.C. Pereira, D. Trimis, J.C.F. Pereira, Catalytic partial oxidation of methane rich mixtures in non-adiabatic monolith reactors, Int. J. Hydrogen Energy 38 (2013), pp. 6989–7006.
  • R. Horn, K.A. Williams, N.J. Degenstein, L.D. Schmidt, Syngas by catalytic partial oxidation of methane on rhodium: mechanistic conclusions from spatially resolved measurements and numerial simulations, J. Catal. 242 (2006), pp. 92–102.
  • R. Horn, K.A. Williams, N.J. Degenstein, A. Bitsch-Larsen, D. Dalle Nogare, S.A. Tupy, L.D. Schmidt, Methane catalytic partial oxidation on autothermal Rh and Pt foam catalysts: oxidation and reforming zones, transport effects, and approach to thermodynamic equilibrium, J. Catal. 249 (2007), pp. 380–393.
  • N.J. Degenstein, Spatially resolved species and temperature profiles in the catalytic partial oxidation of methane and ethane, . Ph.D. diss., University of Minnesota, Minneapolis and St Paul, MN, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.