170
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Combustion mechanism of ultralean rotating counterflow twin premixed flame

&
Pages 57-80 | Received 19 Jun 2014, Accepted 13 Oct 2014, Published online: 20 Jan 2015

References

  • Y.L. Shoshin and L.P.H. De Goey, Experimental study of lean flammability limits of methane/hydrogen/air mixtures in tubes of different diameters, Exp. Therm. Fluid Sci. 34 (2010), pp. 373–380.
  • C.K. Law, Combustion Physics, Cambridge University Press, Cambridge, UK, 2006, pp. 346–353.
  • D. Dunn-Rankin (ed.), Lean Combustion – Technology and Control, Academic Press, Cambridge, MA, 2008.
  • F.J. Weinberg, Combustion temperatures: the future?, Nature 233 (1971), pp. 239–241.
  • M. Katsuki and T. Hasegawa, The science and technology of combustion in highly preheated air, Proc. Combust. Inst. 27 (1998), pp. 3135–3146.
  • Y. Ju and K. Maruta, Microscale combustion: Technology development and fundamental research, Prog. Energy Combust. Sci. 37 (2011), pp. 669–715.
  • S. Wood and A.T. Harris, Porous burners for lean-burn applications, Prog. Energy Combust. Sci. 34 (2008), pp. 667–684.
  • E. Mastorakos, A.M.K.P. Taylor, and J.H. Whitelaw, Extinction of turbulent counterflow flames with reactants diluted by hot products, Combust. Flame 102 (1995), pp. 101–114.
  • Z. Cheng, J.A. Wehrmeyer, and R.W. Pitz, Lean or ultra-lean stretched planar methane/air flames, Proc. Combust. Inst. 30 (2005), pp. 285–293.
  • Z. Cheng, R. Pitz, and J. Wehrmeyer, Lean and ultralean stretched propane–air counterflow flames, Combust. Flame 145 (2006), pp. 647–662.
  • M. Smooke and V. Giovangigli, A comparison between experimental measurements and numerical calculations of the structure of premixed rotating counterflow methane–air flames, Proc. 24th Symp. (Int.) Combust. 24 (1992), pp. 161–168.
  • Z.H. Chen, G.E. Liu, and S.H. Sohrab, Premixed Flames in Counterflow Jets Under Rigid-Body Rotation, Combust. Sci. Technol. 51 (1987), pp. 39–50.
  • G.I. Sivashinsky and S.H. Sohrab, SHORT COMMUNICATION The Influence of Rotation on Premixed Lames in Stagnation-Point Flow, Combust. Sci. Technol. 53 (1987), pp. 67–74.
  • P.A. Libby, F.A. Williams, and G.I. Sivashinsky, Influences of swirl on the structure and extinction of strained premixed flames. Part I: Moderate rates of rotation, Phys. Fluids A: Fluid Dynam. 2 (7) (1990), pp. 1213.
  • J.S. Kim, P.A. Libby, and F.A. Williams, Influences of swirl on the structure and extinction of strained premixed flames. Part II: Strong rates of rotation, Phys. Fluids A: Fluid Dynam. 4 (7) (1992), pp. 391.
  • J.H. Tien and M. Matalon, Effect of swirl on strained premixed flames for mixtures with Lewis number distinct from unity, Combust. Sci. Technol. 87 (1993), pp. 257–273.
  • M. Nishioka, Z. Shen, and A. Uemichi, Ultra-lean combustion through the backflow of burned gas in rotating counterflow twin premixed flames, Combust. Flame 158 (2011), pp. 2188–2198.
  • A. Uemichi and M. Nishioka, Numerical study on ultra-lean rotating counterflow twin premixed flame of hydrogen–air, Proc. Combust. Inst. 34 (2013), pp. 1135–1142.
  • G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, and Z. Qin. Available at http://www.me.berkeley.edu/gri-mech/.
  • M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, and S.J. Klippenstein, Comprehensive H2/O2 kinetic model for high-pressure combustion, Int. J. Chem. Kinet. 44 (2012), pp. 444–474.
  • Z. Qin, V.V. Lissianski, H. Yang, W.C. Gardiner, S.G. Davis, and H. Wang,, Combustion chemistry of propane: A case study of detailed reaction mechanism optimization, Proc. Combust. Inst. 28 (2000), pp. 1663–1669.
  • R.J. Kee, J.F. Grcar, M.D. Smooke, and J.A. Miller, A Fortran program for modeling steady laminar one-dimensional premixed flames., Sandia Report SAND858240, 1985.
  • R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, and J.A. Miller, A Fortran computer code package for the evaluation of gas-phase, multicomponent transport properties, Sandia Report SAND86-8246, 1986.
  • R.J. Kee, F.M. Rupley, and J.A. Miller, The Chemkin Thermodynamic Data Base, Sandia Report SAND89-8009, 1990.
  • Z.H. Chen and S.H. Sohrab, Flammability limit and limit-temperature of counteflow lean methane–air flames, Combust. Flame 102 (1995), pp. 193–199.
  • H. Guo, Y. Ju, K. Maruta, T. Niioka, and F. Liu, Radiation extinction limit of counterflow premixed lean methane–air flames, Combust. Flame 109 (1997), pp. 639–646.
  • F.A. Williams, Combustion Theory, 2nd ed., Benjamin Cummings, 1985, pp. 341–364.
  • C.K. Law, Dynamics of stretched flames, Proc. 22nd Symp. (Int.) Combust. (1988), pp. 1381–1402.
  • J.A.M. de Swart, G.R.a. Groot, J.a. van Oijen, J.H.M. ten Thije Boonkkamp, and L.P.H. de Goey, Detailed analysis of the mass burning rate of stretched flames including preferential diffusion effects, Combust. Flame 145 (2006), pp. 245–258.
  • R.A. Strehlow, Combustion Fundamentals, McGraw-Hill, New York, 1985, pp. 290–296.
  • D.L. Zhu, F.N. Egolfopoulos, and C.K. Law, Experimental and numerical determination of laminar flame speeds of methane/(Ar, N2, CO2)–air mixtures as function of stoichiometry, pressure, and flame temperature, Proc. 22nd Symp. (Int.) Combust. (1988), pp. 1537–1545.
  • R.J. Kee, J.A. Miller, G.H. Evans, and G. Dixon-Lewis, A computational model of the structure and extinction of strained, opposed flow, premixed methane–air flames, Proc. 22th Symp. (Int.) Combust. (1989), pp. 1479–1494.
  • M. Nishioka, K. Inagaki, S. Ishizuka, and T. Takeno, Effects of pressure on structure and extinction of tubular flame, Combust. Flame 86 (1991), pp. 90–100.
  • C.J. Sun, C.J. Sung, L. He, and C.K. Law, Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters, Combust. Flame. 118 (1999), pp. 108–128.
  • A. Uemichi, H. Aizawa, T. Hattori, and M. Nishioka, Numerical Study on Ultra-Lean Combustion by Using Stagnation Flow Swirl Burner, Proc. 24th ICDERS, Taipei, Taiwan (2013).
  • S.H. Sohrab, Z.Y. Ye, and C.K. Law, An experimental investigation on flame interaction and the existence of negative flame speeds, Proc. 20th Symp. (Int.) Combust. (1984), pp. 1957–1965.
  • G. Bansal, H.G. Im, and J.K. Bechtold, Flame-flow interactions and flow reversal, Combust. Flame. 159 (2012), pp. 1489–1498.
  • A. Upatnieks, J.F. Driscoll, and S.L. Ceccio, Cinema particle imaging velocimetry time history of the propagation velocity of the base of a lifted turbulent jet flame, Proc. Combust. Inst. 29 (2002), pp. 1897–1903.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.