386
Views
33
CrossRef citations to date
0
Altmetric
Articles

Development of a numerical model for the electric current in burner-stabilised methane–air flames

ORCID Icon, ORCID Icon & ORCID Icon
Pages 159-187 | Received 01 Jul 2014, Accepted 03 Dec 2014, Published online: 30 Jan 2015

References

  • J. Green , T. Sugden , Some observations on the mechanism of ionization in flames containing hydrocarbons , Symp, Int. Combust. 9 (1963), pp. 607–621.
  • G. Wortberg , Ion-concentration measurements in a flat flame at atmospheric pressure , Symp, Int. Combust. 10 (1965), pp. 651–655.
  • J. Goodings , D. Bohme , and C.W. Ng , Detailed ion chemistry in methane–oxygen flames. I. Positive ions, Combust. Flame 36 (1979), pp. 27–43.
  • R.C. Brown and A.N. Eraslan , Simulation of ionic structure in lean and close-to-stoichiometric acetylene flames , Combust. Flame 73 (1) (1988), pp. 1–21.
  • M. Belhi , P. Domingo and P. Vervisch , Direct numerical simulation of the effect of an electric field on flame stability , Combust. Flame 157 (12) (2010), pp. 2286–2297.
  • A.B. Fialkov , Investigations of ions in flames , Prog. Energy Combust. Sci. 23 (1997), pp. 399–528.
  • S.M. Starikovskaia , Plasma assisted ignition and combustion , J. Phys. D: Appl. Phys. 39 (2006), pp. 265–299.
  • A.Y. Starikovskii , Plasma assisted ignition and combustion , Proc. Combust. Inst. 30 (2005), pp. 2405–2417.
  • C.F. Kaminski , J. Hult , M. Aldén , S. Lindenmaier , A. Dreizler , U. Maas , and M. Baum , Spark ignition of turbulent methane/air mixtures revealed by time-resolved planar laser-induced fluorescence and direct numerical simulations , Proc. Combust. Inst. 28 (2000), pp. 399–405.
  • D. Bradley and F.K.-K. Lung , Spark ignition and the early stages of turbulent flame propagation , Combust. Flame 69 (1987), pp. 71–93.
  • K. Ishii , T. Tsukamoto , Y. Ujiie , and M. Kono , Analysis of ignition mechanism of combustible mixtures by composite sparks , Combust. Flame 91 (1992), pp. 153–164.
  • M. Thiele , S. Selle , U. Riedel , J. Warnatz , and U. Maas , Numerical simulation of spark ignition including ionization , Proc. Combust. Inst. 28 (2000), pp. 1177–1185.
  • T. Yuasa , S. Kadota , M. Tsue , M. Kono , H. Nomura , and Y. Ujiie , Effects of energy deposition schedule on minimum ignition energy in spark ignition of methane/air mixtures , Proc. Combust. Inst. 29 (2002), pp. 743–750.
  • L.B.W. Peerlings , M. Manohar , V.N. Kornilov , and L.P.H. de Goey , Flame ion generation rate as a measure of the flame thermo-acoustic response , Combust. Flame 160 (11) (2013), pp. 2490–2496.
  • J. Lawton and F.J. Weinberg , Electrical Aspects of Combustion , 1st ed., Clarendon Press, Oxford, 1969.
  • J.M. Goodings , D.K. Bohme , and C.-W. Ng , Detailed ion chemistry in methane–oxygen flames. II. Negative ions , Combust. Flame 36 (1979), pp. 45–62.
  • T.H.H. Tsuji and T. Hirano , Ion-concentration distributions in two-dimensional nozzle burner flames at atmospheric pressure , Combust. Flame 15 (1970), pp. 47–56.
  • F.L. Jones , P.M. Becker , and R.J. Heinsohn , A mathematical model of the opposed-jet diffusion flame: Effect of an electric field on concentration and temperature profiles , Combust. Flame 19 (1972), pp. 351–362.
  • J. Cancian , B.A.V. Bennett , M.B. Colket , and M.D. Smooke , Prediction of electron and ion concentrations in low-pressure premixed acetylene and ethylene flames , Combust. Theory Model. 17 (2) (2013), pp. 294–315.
  • J. Prager , U. Riedel , and J. Warnatz , Modeling ion chemistry and charged species diffusion in lean methane–oxygen flames , Proc. Combust. Inst. 31 (2007), pp. 1129–1137.
  • K. Criner , Stabilisation de flammes de diffusion turbulentes assistée par plasma hors-équilibre et par champ électrique , Ph.D. thesis, Rouen University, France, 2008.
  • K.S.C. Beks-Peerenboom , Modeling of magnetized expanding plasmas , Ph.D. thesis, Eindhoven University of Technology, The Netherlands, 2012.
  • J. Peeters and C. Vinckier , Formation and behaviour of chemi-ions in flames , Oxidation Combust. Rev. 4 (1969), pp. 93–132.
  • M.J. Papac and D. Dunn-Rankin , Modelling electric field driven convection in small combustion plasmas and surrounding gases , Combust. Theory Model. 12 (2007), pp. 23–44.
  • N. Speelman , M. Kiefer , D. Markus , U. Maas , L.P.H. de Goey , and J.A. van Oijen , Validation of a novel numerical model for the electric currents in burner-stabilized methane–air flames , Proc. Combust. Inst. 35 (2015). Available at http://dx.doi.org/10.1016/j.proci.2014.05.067.
  • L.M.T. Somers , The simulation of flat flames with detailed and reduced chemical models , Ph.D. thesis, Eindhoven University of Technology, The Netherlands, 1994. Available at http://alexandria.tue.nl/repository/books/420430.pdf
  • J.D. Buckmaster and T. Takeno , Mathematical Modeling in Combustion Science , Springer-Verlag, New York, 1988.
  • J. Warnatz , U. Maas , and R.W. Dibble , Combustion; Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation , 4th ed., Springer-Verlag, Berlin, 2006.
  • B. McBride , S. Gordon , and M.A. Reno , Coefficients for calculating thermodynamic and transport properties of individual species , NASA Report TM-4513, National Aeronautics and Space Administration, Glenn Research Center, Washington, D.C., 1993.
  • M.A. Lieberman and A.J. Lichtenberg , Principles of Plasma Discharges and Materials Processing , Wiley-Interscience, New York, 1994.
  • A. Ern and V. Giovangigli , Multicomponent Transport Algorithms , Lecture Notes in Physics Monographs Vol. 24, Springer-Verlag, Berlin, 1994.
  • A. Evlampiev , Numerical combustion modeling for complex reaction systems , Ph.D. thesis, Eindhoven University of Technology, The Netherlands, 2007.
  • N.A. Patankar , P. Singh , D.D. Joseph , R. Glowinski , and T.-W. Pan , A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows , Int. J. Multiphase Flow 26 (2000), pp. 1509–1524.
  • K.J. Bosschaart , Analysis of the heat flux method for measuring burning velocities , Ph.D. thesis, Eindhoven University of Technology, The Netherlands, 2002.
  • G.P. Smith , D.M. Golden , M. Frenklach , N.W. Moriarty , B. Eiteneer , M. Goldenberg , C.T. Bowman , R.K. Hanson , S. Song , W.C. Gardiner Jr , V.V. Lissianski , and Z. Qin , GRI-Mech 3.0 . Available at http://www.me.berkeley.edu/gri_mech/ (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.