240
Views
3
CrossRef citations to date
0
Altmetric
Articles

A PDF projection method: A pressure algorithm for stand-alone transported PDFs

ORCID Icon, , &
Pages 188-222 | Received 18 Feb 2014, Accepted 08 Dec 2014, Published online: 28 Jan 2015

References

  • D.C. Haworth , Progress in probability density function methods for turbulent reacting flows , Prog. Energy Combust. Sci. 36 (2010), pp. 168–259.
  • D. Roekaerts , Monte Carlo PDF method for turbulent reacting flow in a jet-stirred reactor , Comput. Fluids 21 (1992), pp. 97–108.
  • R.P. Lindstedt , S.A. Louloudi , and E.M. Váos , Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry , Proc. Combust. Inst. 28 (2000), pp. 149–156.
  • W. Vicente , M. Salinas , E. Barrios , and C. Dopazo , PDF modeling of CO and NO formation in lean premixed methane flames , Combust. Sci. Technol. 176 (2004), pp. 585–601.
  • B. Merci , B. Naud , D. Roekaerts , and U. Maas , Joint scalar versus joint velocity–scalar PDF simulations of bluff-body stabilized flames with REDIM , Flow Turbul. Combust. 82 (2008), pp. 185–209.
  • M. Stöllinger and S. Heinz , Evaluation of scalar mixing and time scale models in PDF simulations of a turbulent premixed flame , Combust. Flame 157 (2010), pp. 1671–1685.
  • S.M. Correa and S.B. Pope , Comparison of a Monte Carlo PDF/finite-volume mean flow model with bluff-body Raman data , Proc. Combust. Inst. 24 (1992), pp. 279–285.
  • P.A. Nooren , H.A. Wouters , T.W.J. Peeters , D. Roekaerts , U. Maas , and D. Schmidt , Monte Carlo PDF modelling of a turbulent natural-gas diffusion flame , Combust. Theory Model. 1 (1997), pp. 79–96.
  • M. Muradoglu , P. Jenny , S.B. Pope , and D.A. Caughey , A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows , J. Comput. Phys. 154 (1999), pp. 342–371.
  • D.H. Rowinski and S.B. Pope , PDF calculations of piloted premixed jet flames , Combust. Theory Model. 15 (2011), pp. 245–266.
  • S.B. Pope and Y.L. Chen , The velocity-dissipation probability density function model for turbulent flows , Phys. Fluids A 2 (1990), pp. 1437–1449.
  • P.R. Van Slooten and S.B. Pope , Advances in PDF modeling for inhomogeneous turbulent flows , Phys. Fluids 10 (1998), pp. 246–265.
  • S.B. Pope , A Monte Carlo method for the PDF equations of turbulent reactive flow , Combust. Sci. Technol. 25 (1981), pp. 159–174.
  • S.B. Pope , PDF methods for turbulent reactive flows , Prog. Energy Combust. Sci. 11 (1985), pp. 119–192.
  • S.B. Pope , Lagrangian PDF methods for turbulent flows , Annu. Rev. Fluid Mech. 26 (1994), pp. 23–63.
  • S.B. Pope , Calculations of velocity–scalar joint PDF's , in Turbul. Shear Flows 3 , L.J. Bradbury , F. Durst , B.E. Launder , F.W. Schmidt , and J.H. Whitelaw , eds., Springer-Verlag, Heidelberg, 1982, pp. 113–123.
  • P. Jenny , S.B. Pope , M. Muradoglu , and D.A. Caughey , A hybrid algorithm for the joint PDF equation of turbulent reactive flows , J. Comput. Phys. 166 (2001), pp. 218–252.
  • M.S. Anand , S.B. Pope , and H.C. Mongia , A PDF method for turbulent recirculating flows , in Turbulent Reacting Flows , R. Borghi and S.N.B. Murthy , eds., Lecture Notes in Engineering , Vol. 40, Springer-Verlag, Heidelberg, 1989, pp. 672–693.
  • L. Rochas and S.B. Pope , A pressure algorithm for particle methods applied to statistically stationary turbulent flows , Tech. Rep. , Cornell University, Ithaca, NY, 1993.
  • D. Maly , R. Vilsmeier , and P. Roth , Improvement of the pressure algorithm of the stand-alone PDF method to treat unsteady three-dimensional turbulent reacting flows , Combust. Theory Model. 13 (2009), pp. 853–883.
  • M. Muradoglu , S.B. Pope , and D.A. Caughey , The hybrid method for the PDF equations of turbulent reactive flows: Consistency conditions and correction algorithms , J. Comput. Phys. 172 (2001), pp. 841–878.
  • Y. Zhang and D.C. Haworth , A general mass consistency algorithm for hybrid particle/finite-volume PDF methods , J. Comput. Phys. 194 (2004), pp. 156–193.
  • T. Hulek , Computations of steady-state and transient premixed turbulent flames using PDF methods , Combust. Flame 104 (1996), pp. 481–504.
  • V. Raman , H. Pitsch , and R.O. Fox , Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion , Combust. Flame 143 (2005), pp. 56–78.
  • B. Naud , C. Jimenez , and D. Roekaerts , A consistent hybrid PDF method: Implementation details and application to the simulation of a bluff-body stabilised flame , Prog. Comput. Fluid Dyn. 6 (2006), pp. 146–157.
  • V. Raman and H. Pitsch , A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry , Proc. Combust. Inst. 31 (2007), pp. 1711–1719.
  • H.W. Ge , M.M. Zhu , Y.L. Chen , and E. Gutheil , Hybrid unsteady RANS and PDF method for turbulent non-reactive and reactive flows , Flow Turbul. Combust. 78 (2006), pp. 91–109.
  • P.J. Colucci , F.A. Jaberi , P. Givi , and S.B. Pope , Filtered density function for large eddy simulation of turbulent reacting flows , Phys. Fluids 10 (1998), pp. 499–515.
  • M.R.H. Sheikhi , T.G. Drozda , P. Givi , and S.B. Pope , Velocity-scalar filtered density function for large eddy simulation of turbulent flows , Phys. Fluids 15 (2003), pp. 2321–2337.
  • M.S. Anand and S.B. Pope , Calculations of premixed turbulent flames by PDF methods , Combust. Flame 67 (1987), pp. 127–142.
  • A.J. Chorin , Numerical solution of the Navier–Stokes equations , Mathematics of Computation 22 (1968), pp. 745–762.
  • J.B. Bell , P. Colella , and H.M. Glaz , A second-order projection method for the incompressible Navier–Stokes equations , J. Comput. Phys. 85 (1989), pp. 257–283.
  • R.B. Pember , L.H. Howell , J.B. Bell , P. Colella , W.Y. Crutchfield , W.A. Fiveland , and J.P. Jesse , An adaptive projection method for unsteady, low-Mach number combustion , Combust. Sci. Technol. 140 (1998), pp. 123–168.
  • A.S. Almgren , J.B. Bell , and W.Y. Crutchfield , Approximate projection methods: Part I. Inviscid analysis , SIAM J. Sci. Comput. 22 (2000), pp. 1139–1159.
  • J. Guermond , P. Minev , and J. Shen , An overview of projection methods for incompressible flows , Comput. Methods Appl. Mech. Eng. 195 (2006), pp. 6011–6045.
  • A. Nonaka , J.B. Bell , M.S. Day , C. Gilet , A.S. Almgren , and M.L. Minion , A deferred correction coupling strategy for low Mach number flow with complex chemistry , Combust. Theory Model. 16 (2012), pp. 1053–1088.
  • J. Bakosi , P. Franzese , and Z. Boybeyi , A non-hybrid method for the PDF equations of turbulent flows on unstructured grids , J. Comput. Phys. 227 (2008), pp. 5896–5935.
  • S.J. Cummins and M. Rudman , An SPH projection method , J. Comput. Phys. 152 (1999), pp. 584–607.
  • A.S. Almgren , J.B. Bell , P. Colella , L.H. Howell , and M.L. Welcome , A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations , J. Comput. Phys. 142 (1998), pp. 1–46.
  • M.S. Day and J.B. Bell , Numerical simulation of laminar reacting flows with complex chemistry , Combust. Theory Model. 4 (2000), pp. 535–556.
  • S.B. Pope , Particle method for turbulent flows: Integration of stochastic model equations , J. Comput. Phys. 117 (1995), pp. 332–349.
  • D.C. Haworth and S.B. Pope , A generalized Langevin model for turbulent flows , Phys. Fluids 29 (1986), pp. 387–405.
  • S.B. Pope , A Lagrangian two-time probability density function equation for inhomogeneous turbulent flows , Phys. Fluids 26 (1983), pp. 3448–3450.
  • J. Xu and S.B. Pope , Assessment of numerical accuracy of PDF/Monte Carlo methods for turbulent reacting flows , J. Comput. Phys. 152 (1999), pp. 192–230.
  • R.O. Fox , Computational models for turbulent reacting flows , Cambridge University Press, Cambridge, UK, 2003.
  • J. Janicka , W. Kolbe , and W. Kollmann , Closure of the transport equation for the probability density function of turbulent scalar fields , J. Non-Equilibrium Thermodyn. 4 (1979), pp. 47–66.
  • P.R. Van Slooten and S.B. Pope , Application of PDF modeling to swirling and nonswirling turbulent jets , Flow Turbul. Combust. 62 (1999), pp. 295–333.
  • J. Xu and S.B. Pope , PDF calculations of turbulent nonpremixed flames with local extinction , Combust. Flame 123 (2000), pp. 281–307.
  • A. Ghorbani , D. Markus , and U. Maas , Application of a PDF method to variable-density jets , in Proceedings of the Seventh International Symposium on Turbulence, Heat and Mass Transfer (THMT-12) , 24–27 September 2012, Palermo, Italy, 1380. Begell House, New York. Available at http://dx.doi.org/10.1615/ICHMT.2012.ProcSevIntSympTurbHeatTransfPal.1380.
  • H. Wang and S.B. Pope , Time-averaging strategies in the finite-volume/particle hybrid algorithm for the joint PDF equation of turbulent reactive flows , Combust. Theory Model. 12 (2008), pp. 529–544.
  • T.D. Dreeben and S.B. Pope , Nonparametric estimation of mean fields with application to particle methods for turbulent flows , Tech. Rep. , FDA 92-13, Cornell University, Ithaca, NY, 1992.
  • R.W. Hockney and J.W. Eastwood , Computer simulation using particles , Taylor & Francis, London, UK, 1988.
  • J. Warnatz , U. Maas , and R.W. Dibble , Combustion – Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation , 4th ed., Springer-Verlag, Heidelberg, 2006.
  • S.B. Pope , Small scales, many species and the manifold challenges of turbulent combustion , Proc. Combust. Inst. 34 (2013), pp. 1–31.
  • V. Bykov and U. Maas , The extension of the ILDM concept to reaction–diffusion manifolds , Combust. Theory Model. 11 (2007), pp. 839–862.
  • U. Maas and S.B. Pope , Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space , Combust. Flame 88 (1992), pp. 239–264.
  • U. Maas and J. Warnatz , Ignition processes in hydrogen–oxygen mixtures , Combust. Flame 74 (1988), pp. 53–69.
  • U. Maas and V. Bykov , The extension of the reaction/diffusion manifold concept to systems with detailed transport models , Proc. Combust. Inst. 33 (2011), pp. 1253–1259.
  • M. Lai , P. Colella , J. Bell , M. Lai , J.B. Bell , and P. Colella , A projection method for combustion in the zero Mach number limit , in Proceedings of the 11th AIAA Computational Fluid Dynamics Conference , 6–9 July 1993, Orlando, FL.
  • W.J. Rider , Approximate projection methods for incompressible flow: Implementation, variants and robustness , Tech. Rep. , Los Alamos National Laboratory, Los Alamos, NM, 1995.
  • P. Chassaing , R. Antonia , F. Anselmet , L. Joly , and S. Sarkar , Variable Density Fluid Turbulence , Kluwer Academic, Dordrecht, The Netherlands, 2002.
  • D.L. Brown , R. Cortez , and M.L. Minion , Accurate projection methods for the incompressible Navier–Stokes equations , J. Comput. Phys. 168 (2001), pp. 464–499.
  • S. Ghosal and P. Moin , The basic equations for the large eddy simulation of turbulent flows in complex geometry , J. Comput. Phys. 118 (1995), pp. 24–37.
  • P.P. Popov and S.B. Pope , Implicit and explicit schemes for mass consistency preservation in hybrid particle/finite-volume algorithms for turbulent reactive flows , J. Comput. Phys. 257 (2014), pp. 352–373.
  • S.B. Pope , Position, velocity and pressure correction algorithm for particle method solution of the PDF transport equations , Tech. Rep., Cornell University, Ithaca NY, 1995.
  • B. Yang and S.B. Pope , An investigation of the accuracy of manifold methods and splitting schemes in the computational implementation of combustion chemistry , Combust. Flame 112 (1998), pp. 16–32.
  • A. Ghorbani , G. Steinhilber , D. Markus , and U. Maas , Application of a PDF method to transient reactive jets , in Proceedings of the 24th International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS) , 28 July–2 August 2013, Taipei, Taiwan, 2013.
  • A. Ghorbani , G. Steinhilber , D. Markus , and U. Maas , Numerical investigation of ignition in a transient turbulent jet by means of a PDF method , Combust. Sci. Technol. 186 (2014), pp. 1582–1596.
  • A. Ghorbani , G. Steinhilber , D. Markus , and U. Maas , Ignition by transient hot turbulent jets: An investigation of ignition mechanisms by means of a PDF/REDIM method , Proc. Combust. Inst. 35 (2014), pp 2191–2198.
  • W.L. Oberkampf and T.G. Trucano , Verification and validation in computational fluid dynamics , Prog. Aerosp. Sci. 38 (2002), pp. 209–272.
  • L. Shunn , F. Ham , and P. Moin , Verification of variable-density flow solvers using manufactured solutions , J. Comput. Phys. 231 (2012), pp. 3801–3827.
  • P.J. Roache , Verification and Validation in Computational Science and Engineering , Hermosa, Socorro, NM, 1998.
  • K. Salari and P. Knupp , Code verification by the method of manufactured solutions , Tech. Rep., Sandia National Laboratories, Albuquerque, NM, 2000.
  • J.C. Strikwerda and Y.S. Lee , The accuracy of the fractional step method , SIAM J. Numer. Anal. 37 (1999), pp. 37–47.
  • H. Wang , P.P. Popov , and S.B. Pope , Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations , J. Comput. Phys. 229 (2010), pp. 1852–1878.
  • N. Peters , Laminar flamelet concepts in turbulent combustion , Proc. Combust. Inst. 21 (1986), pp. 1231–1250.
  • S.B. Pope and M.S. Anand , Flamelet and distributed combustion in premixed turbulent flames , Proc. Combust. Inst. 20 (1984), pp. 403–410.
  • B.T. Zoller , M.L. Hack , and P. Jenny , A PDF combustion model for turbulent premixed flames , Proc. Combust. Inst. 34 (2013), pp. 1421–1428.
  • K.N.C. Bray , P.A. Libby , G. Masuya , and J.B. Moss , Turbulence production in premixed turbulent flames , Combust. Sci. Technol. 25 (1981), pp. 127–140.
  • P.G. Hill and P. Ouellette , Transient turbulent gaseous fuel jets for diesel engines , J. Fluids Eng. 121 (1999), pp. 93–101.
  • H. Johari , S.M. Bourque , M.J. Rose , and Q. Zhang , Impulsively started turbulent jets , AIAA J. 35 (1997), pp. 657–662.
  • A. Joshi and W. Schreiber , An experimental examination of an impulsively started incompressible turbulent jet , Exp. Fluids 40 (2006), pp. 156–160.
  • G.E. Cossali , L. Araneo , and A. Coghe , Near-field entrainment in an impulsively started turbulent gas jet , AIAA J. 39 (2001), pp. 1113–1122.
  • W. Rizk , Experimental studies of the mixing processes and flow configurations in two-cycle engine scavenging , Proc. Inst. Mech. Eng. 172 (1958), pp. 417–437.
  • C. Krok , Jet initiation of deflagration and detonation , Ph.D. thesis, California Institute of Technology, Pasadena, CA, 1997.
  • R. Sadanandan , D. Markus , R. Schiessl , U. Maas , J. Olofsson , H. Seyfried , M. Richter , and M. Aldén , Detailed investigation of ignition by hot gas jets , Proc. Combust. Inst. 31 (2007), pp. 719–726.
  • J. Carpio , I. Iglesias , M. Vera , A.L. Sánchez , and A. Liñán , Critical radius for hot-jet ignition of hydrogen–air mixtures , Int. J. Hydrogen Energy 38 (2013), pp. 3105–3109.
  • R. Sadanandan , Ignition by hot gas jets – a detailed investigation using 2D time resolved laser techniques and numerical simulations , Dissertation, Karlsruhe University, Germany, 2007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.