779
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Numerical modelling of ion transport in flames

, , &
Pages 744-772 | Received 26 Apr 2015, Accepted 10 Aug 2015, Published online: 20 Oct 2015

References

  • A. Fialkov, Investigations on ions in flames, Prog. Energy Combust. Sci. 23 (1997), pp. 399–528.
  • M. Belhi, P. Domingo, and P. Vervisch, Modelling of the effect of DC and AC electric fields on the stability of a lifted diffusion methane/air flame, Combust. Theory Model. 17 (2013), pp. 749–787.
  • J. Deckers and A. van Tiggelen, Extraction of ions from a flame, Combust. Flame 1 (1957), pp. 281–286.
  • J. Deckers and A. van Tiggelen, Ion identification in flames, Proc. Combust. Inst. 7 (1958), pp. 254–255.
  • P. Knewstubb and T. Sugden, Mass spectrometry of the ions present in hydrocarbon flames, Proc. Combust. Inst. 7 (1958), pp. 247–253.
  • S.D. Jaegere, J. Deckers, and A. van Tiggelen, Identity of the most abundant ions in some flames, Proc. Combust. Inst. 8 (1961), pp. 155–160.
  • J. Peeters and A. van Tiggelen, Experimental determination of the rate of the chemi-ionization process, Proc. Combust. Inst. 12 (1969), pp. 437–446.
  • J. Goodings, D. Bohme, and C. Ng, Detailed ion chemistry in methane–oxygen flames. Part 1: Positive ions, Combust. Flame 36 (1979), pp. 27–43.
  • J. Goodings, D. Bohme, and C. Ng, Detailed ion chemistry in methane–oxygen flames. Part 2: Negative ions, Combust. Flame 36 (1979), pp. 45–62.
  • R.C. Brown and A.N. Eraslan, Simulation of ionic structure in lean and close-to-stoichiometric acetylene flames, Combust. Flame 73 (1988), pp. 1–21.
  • A.N. Eraslan and R.C. Brown, Chemiionization and ion–molecule reactions in fuel-rich acetylene flames, Combust. Flame 74 (1988), pp. 19–37.
  • J. Prager, Modeling and simulation of charged species in lean methane–oxygen flames, Ph.D. thesis, Ruprecht-Karls-Universität, Heidelberg, Germany, 2005.
  • J. Prager, U. Riedel, and J. Warnatz, Modeling ion chemistry and charged species diffusion in lean methane–oxygen flames, Proc. Combust. Inst. 31 (2007), pp. 1129–1137.
  • M.J. Papac and D. Dunn-Rankin, Modelling electric field driven convection in small combustion plasmas and surrounding gases, Combust. Theory Model. 12 (2007), pp. 23–44.
  • N. Speelman et al., Validation of a novel numerical model for the electric currents in burner-stabilized methane–air flames, Proc. Combust. Inst. 35 (2014), pp. 847–854.
  • F. Bisetti and M.E. Morsli, Calculation and analysis of the mobility and diffusion coefficient of thermal electrons in methane/air premixed flames, Combust. Flame 159 (2012), pp. 3518–3521.
  • F. Bisetti and M.E. Morsli, Kinetic parameters, collision rates, energy exchanges and transport coefficients of non-thermal electrons in premixed flames at sub-breakdown electric field strengths, Combust. Theory Model. 18 (2014), pp. 148–184.
  • E.A. Mason and E.W. McDaniel, Transport Properties of Ions in Gases, Wiley-Interscience, New York, NY, 1988.
  • S. Selle and U. Riedel, Transport coefficients of reacting air at high temperature, in Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, 10–13 January 2000, Reno, NV. Paper No. AIAA 2000-0211. Available at http://www.iwr.uni-heidelberg.de/groups/reaflow/user/OLD/selle/docs/AIAA2000_0211.pdf.
  • D.J.I. Russell, NIST Computational Chemistry Comparison and Benchmark Database, 2013. Available at http://cccbdb.nist.gov/.
  • R. Bosque and J. Sales, Polarizabilities of solvents from the chemical composition, J. Chem. Info. & Comput. Sci. 42 (2002), pp. 1154–1163.
  • E. Gogolides and H. Sawin, Continuum modeling of radio-frequency glow discharges. I: Theory and results for electropositive and electronegative gases, J. Appl. Phys. 72 (1992), pp. 3971–3987.
  • T. Pedersen and R.C. Brown, Simulation of electric field effects in premixed methane flames, Combust. Flame 94 (1993), pp. 433–448.
  • M. Belhi, P. Domingo, and P. Vervisch, Direct numerical simulation of the effect of an electric field on flame stability, Combust. Flame 157 (2010), pp. 2286–2297.
  • R.J. Kee, M.E. Coltrin, and P. Glarborg, Chemically Reacting Flow: Theory & Practice, Wiley-Interscience, Hoboken, NJ, 2003.
  • R.V. Chiflikian, The analog of Blanc's law for drift velocities of electrons in gas mixtures in weakly ionized plasma, Phys. Plasmas 2 (1995), pp. 3902–3909.
  • J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird, The Molecular Thoery of Gases and Liquids, John Wiley, New York, NY, 1954.
  • W.F. Siems, L.A. Viehland, and J. Herbert H. Hill, Improved momentum-transfer theory for ion mobility. 1: Derivation of the fundamental equation, Anal. Chem. 84 (2013), pp. 9782–9791.
  • J. Lawton and F. Weinberg, Electrical Aspects of Combustion, Clarendon Press, London, 1969.
  • S. Chapman and T. Cowling, The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1970.
  • A. Ern and V. Giovangigli, Multicomponent Transport Algorithms, Lecture Notes in Physics, New Series Monographs, Springer-Verlag, Heidelberg, 1994.
  • V. Giovangigli, Multicomponent transport algorithms for partially ionized plasmas, J. Comput. Phys. 210 (2010), pp. 4117–4142.
  • V. Giovangigli, Multicomponent flow modeling, in Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Basel, 1999.
  • E.A. Mason, R.J. Munn, and F.J. Smith, Transport coefficients of ionized gases, Phys. Fluids 10 (1967), p. 1827.
  • A. Buckingham, P. Fowler, and M. Hutson, Theoretical studies of van der Waals molecules and intermolecular forces, Chem. Rev. 88 (1988), pp. 963–988.
  • V. Aquilanti, D. Cappelletti, and F. Pirani, Range and strength of interatomic forces: Dispersion and induction contributions to the bonds of dications and of ionic molecules, Chem. Phys. 209 (1996), pp. 299–311.
  • A. Vincenzo et al., Orientational and spin–orbital dependence of interatomic forces, J. Chem. Soc., Faraday Trans. 2 85 (1989), pp. 955–964.
  • D. Cappelletti, G. Liuti, and F. Pirani, Generalization to ion–neutral systems of the polarizability correlations for interaction potential parameters, Chem. Phys. Lett. 183 (1991), pp. 297–303.
  • L. Viehland et al., Tables of transport collision integrals for (n, 6, 4) ion–neutral potentials, At. Data & Nucl. Data Tabs 16 (1975), pp. 495–514.
  • A. Burcat, Ideal gas thermodynamic data in polynomial form for combustion and air pollution use, 2006. Available at http://garfield.chem.elte.hu/Burcat/burcat.html.
  • P. Stephens et al., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98 (1994), pp. 11623–11627.
  • T. Dunning, Gaussian basis sets for use in correlated molecular calculations. I: The atoms boron through neon and hydrogen, J. Chem. Phys. 90 (1989), pp. 1007–1023.
  • J. Hub et al., Thermodynamics of hydronium and hydroxide surface solvation, Chem. Sci. 5 (2014), pp. 1745–1749. Available at http://dx.doi.org./10.1039/C3SC52862F.
  • H. Ellis et al., Transport properties of gaseous ions over a wide energy range. Part I, At. Data Nucl. Data Tables 17 (1976), pp. 177–210. Available at http://www3.nd.edu/sst/teaching/AME60637/reading/1976_ADNDT_Ellis_Pai_McDaniel_ transport_properties_gaseous_ions.pdf.
  • H. Ellis et al., Transport properties of gaseous ions over a wide energy range. Part II, At. Data Nucl. Data Tables 22 (1978), pp. 179–217.
  • H. Ellis et al., Transport properties of gaseous ions over a wide energy range. Part III, At. Data Nucl. Data Tables 31 (1984), pp. 113–151.
  • L. Viehland and E. Mason, Transport properties of gaseous ions over a wide energy range. Part IV, At. Data Nucl. Data Tables 60 (1995), pp. 37–95. Available at http://www.mice.iit.edu/scratch/scratch/ben/MTA/Thesis/References/MobilityH3_Viehland.pdf.
  • G.P. Smith et al., GRI-Mech, 2000. Available at http://www.me.berkeley.edu/gri-mech/.
  • D. Kim et al., Uncertainty quantification of ion chemistry in lean and stoichiometric homogenous mixtures of methane, oxygen, and argon, Combust. Flame 162 (2015), pp. 2904–2915. Available at http://dx.doi.org./10.1016/j.combustflame.2015.03.013.
  • R.J. Kee et al., A Fortran program for modeling steady laminar one-dimensional premixed flames, Rep. SAND85-8240, Sandia National Laboratories, 1985.
  • LXcat repository: Phelps database (N2, CO); Morgan database (O2, H2, CO2, H2O); and Hayashi database (CH4), 2012. Available at http://www.lxcat.laplace.univ-tlse.fr.
  • I. Dotan, W. Lindinger, and D.L. Albritton, Mobilities of various mass-identified positive and negative ions in helium and argon, J. Chem. Phys. 64 (1976), pp. 4544–4547.
  • H. Böhringer, M. Durup-Ferguson, and D. Fahey, Mobilities of various mass-identified positive ions in helium, neon and argon, J. Chem. Phys. 79 (1983), p. 1974. Available at http://dx.doi.org/10.1063/1.445979.
  • W. Lindinger and D. Albritton, Mobilities of various mass-identified positive ions in helium and argon, J. Chem. Phys. 62 (1975), p. 3517.
  • M. McFarland et al., Flow–drift technique for ion mobility and ion–molecule reaction rate constant measurements. I: Apparatus and mobility measurements, J. Chem. Phys. 59 (1973), p. 6610.
  • E. Graham et al., Mobilities and longitudinal diffusion coefficients of mass-identified hydrogen ions in H2 and deuterium ions in D2 gas, J. Chem. Phys. 59 (1973), p. 3477.
  • I. Dotan et al., Mobilities of CO+2, N2H+, H3O+, H3O+H2O, and H3O+(H2O)2 ions in N2, J. Chem. Phys. 65 (1976), p. 5028.
  • J. Warnatz, Rate coefficients in the C/H/O system, in Combustion Chemistry, W.C. Gardiner, ed., Springer-Verlag, New York, 1984, pp. 197–360.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.