671
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames

, &
Pages 773-806 | Received 25 Mar 2015, Accepted 17 Sep 2015, Published online: 05 Nov 2015

References

  • G.M. Faeth, Evaporation and combustion of sprays, Prog. Energy Combust. Sci. 9 (1983), pp. 1–76.
  • R. Borghi, Background on droplets and sprays, in Combustion and Turbulence in Two Phase Flows, Lecture Series 1996–2002, Von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium, 1996.
  • W.A. Sirignano, Fluid dynamics and transport of droplets and sprays, 2nd ed., Cambridge University Press, Cambridge, 2010.
  • P. Jenny, D. Roekaerts, and N. Beishuizen, Modeling of turbulent dilute spray combustion, Prog. Energy Combust. Sci. 38 (2012), pp. 846–887.
  • W.A. Sirignano, Advances in droplet array combustion theory and modeling, Prog. Energy Combust. Sci. 42 (2014), pp. 54–86.
  • A.L. Sanchez, J. Urzay, and A. Liñán, The role of separation of scales in the description of spray combustion, Proc. Combust. Inst. 35 (2014), pp. 1549–1577.
  • G. Continillo and W.A. Sirignano, Counterflow spray combustion modeling, Combust. Flame 81 (1990), pp. 325–340.
  • C. Hollmann and E. Gutheil, Diffusion flames based on a laminar spray flame library, Combust. Sci. Technol. 135 (1998), pp. 175–192.
  • S. Russo and A. Gomez, The extinction behavior of small interacting droplets in cross-flow, Combust. Flame 130 (2002), pp. 215–224.
  • S. Russo and A. Gomez, Physical characterization of laminar spray flames in the pressure range 0.1–0.9 MPa, Combust. Flame 145 (2006), pp. 339–356.
  • S. Lerman and J.B. Greenberg, Spray diffusion flames – an asymptotic theory, Atomiz. & Sprays 20 (2010), pp. 1047–1064.
  • S.C. Li, P.A. Libby, and F.A. Williams, Experimental and theoretical studies of counterflow spray diffusion flames, Symp. (Int.) Combust. 24 (1992), pp. 1503–1512.
  • N. Darabiha, F. Lacas, J.C. Rolon, and S. Candel, Laminar counterflow spray diffusion flames: A comparison between experimental results and complex chemistry calculations, Combust. Flame 95 (1993), pp. 261–275.
  • M. Massot, M. Kumar, M.D. Smooke, and A. Gomez, Spray counterflow diffusion flames of heptane: Experiments and computations with detailed kinetics and transport, Proc. Combust. Inst. 27 (1998), pp. 1975–1983.
  • E. Gutheil and W.A. Sirignano, Counterflow spray combustion modeling with detailed transport and detailed chemistry, Combust. Flame 113 (1998), pp. 92–105.
  • E. Gutheil, Multiple solutions for structures of laminar counterflow spray flames, Prog. Comput. Fluid Dyn. 5 (2005), pp. 414–419.
  • H. Watanabe, R. Kurose, S.M. Hwang, and F. Akamatsu, Characteristics of flamelets in spray flames formed in a laminar counterflow, Combust. Flame 148 (2007), pp. 234–248.
  • J.B. Greenberg and N. Sarig, Coupled evaporation and transport effects in counterflow spray diffusion flames, Combust. Sci. Technol. 92 (1993), pp. 1–33.
  • A. Dvorjetski and J.B. Greenberg, Steady-state and extinction analyses of counterflow spray diffusion flames with arbitrary finite evaporation rate, Combust. Sci. Technol. 174 (2002), pp. 187–208.
  • A. Dvorjetski and J.B. Greenberg, Analysis of steady state polydisperse counterflow spray diffusion flames in the large Stokes number limit, Proc. Combust. Inst. 32 (2009), pp. 2205–2214.
  • V.S. Santoro, D.C. Kyritsis, and A. Gomez, An experimental study of vortex–flame interaction in counterflow spray diffusion flames, Proc. Combust. Inst. 28 (2000), pp. 1023–1030.
  • V.S. Santoro and A. Gomez, Extinction and reignition in counterflow spray diffusion flames interacting with laminar vortices, Proc. Combust. Inst. 29 (2002), pp. 585–592.
  • A. Vié, B. Franzelli, Y. Gao, T. Lu, H. Wang, and M. Ihme, Analysis of segregation and bifurcation in turbulent spray flames: A 3D counterflow configuration, Proc. Combust. Inst. 35 (2014), pp. 1675–1683.
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10 (1984), pp. 319–339.
  • R. Borghi, The links between turbulent combustion and spray combustion and their modelling, in 8th International Symposium on Transport Phenomena in Combustion, 1996, pp. 1–18.
  • F. Demoulin and R. Borghi, Assumed PDF modeling of turbulent spray combustion, Combust. Sci. Technol. 158 (2000), pp. 249–271.
  • H. Olguin and E. Gutheil, Influence of evaporation on spray flamelet structures, Combust. Flame 161 (2014), pp. 987–996.
  • A. Vié, B. Franzelli, B. Fiorina, N. Darabiha, and M. Ihme, On the description of spray flame structure in the mixture fraction space, Annual Research Briefs, Center for Turbulence Research, Stanford University, 2013, pp. 93–106.
  • W.A. Sirignano, A general superscalar for the combustion of liquid fuels, Proc. Combust. Inst. 29 (2002), pp. 535–542.
  • R.W. Bilger, A mixture fraction framework for the theory and modeling of droplets and sprays, Combust. Flame 158 (2011), pp. 191–202.
  • N.S.A. Smith, C.M. Cha, H. Pitsch, and J.C. Oefelein, Simulation and modeling of the behavior of conditional scalar moments in turbulent spray combustion, Proceedings of the Summer Program 2000, Center for Turbulence Research, Stanford University, 2000, pp. 207–218.
  • K. Luo, F. Jianren, and K. Cen, New spray flamelet equations considering evaporation effects in the mixture fraction space, Fuel 103 (2014), pp. 1154–1157.
  • H. Olguin and E. Gutheil, Theoretical and numerical study of evaporation effects in spray flamelet model, in Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays, B. Merci and E. Gutheil, eds., Springer, Switzerland, 2014, pp. 79–106.
  • D. Maionchi and F. Fachini, Simple spray–flamelet model: Influence of ambient temperature and fuel concentration, vaporisation source and fuel injection position, Combust. Theory Model. 17 (2013), pp. 522–542.
  • F.A. Williams, Combustion Theory, Benjamin Cummings, Menlo Park, CA, 1985.
  • A. Liñán, The asymptotic structure of counterflow diffusion flames for large activation energies, Acta Astronautica 1 (1974), pp. 1007–1039.
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, 3rd ed., Thierry Poinsot, 2012.
  • K. Seshadri and N. Peters, Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling, Combust. Flame 73 (1988), pp. 24–44.
  • M. Maxey and J. Riley, Equation of motion for a small rigid sphere in a non uniform flow, Phys. Fluids 26(4) (1983), pp. 2883–2889.
  • R.W. Bilger, S.H. Starner, and R.J. Kee, On reduced mechanisms for methane–air combustion in nonpremixed flames, Combust. Flame 80 (1990), pp. 135–149.
  • J. Urzay, D. Martìnez-Ruiz, A.L. Sánchez, A. Liñán, and F.A. Williams, Flamelet structures in spray ignition, Annual Research Briefs, Center for Turbulence Research, Stanford University, 2014, pp. 107–122.
  • B. Franzelli, E. Riber, M. Sanjosé, and T. Poinsot, A two-step chemical scheme for large eddy simulation of kerosene–air flames, Combust. Flame 157 (2010), pp. 1364–1373.
  • F. Laurent and M. Massot, Multi-fluid modeling of laminar poly-dispersed spray flames: Origin, assumptions and comparison of the sectional and sampling methods, Combust. Theory Model. 5 (2001), pp. 537–572.
  • D. Kah, F. Laurent, L. Fréret, S. de Chaisemartin, R. Fox, J. Reveillon, and M. Massot, Eulerian quadrature-based moment models for dilute polydisperse evaporating sprays, Flow Turbul. Combust. 85 (2010), pp. 649–676.
  • J. Ferry and S. Balachandar, A fast Eulerian method for disperse two-phase flow, Int. J. Multiphase Flow 27 (2001), pp. 1199–1226.
  • H. Pitsch and N. Peters, A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects, Combust. Flame 114 (1998), pp. 26–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.