423
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

Simulations of sooting turbulent jet flames using a hybrid flamelet/stochastic Eulerian field method

, &
Pages 221-257 | Received 22 Apr 2015, Accepted 15 Nov 2015, Published online: 29 Jan 2016

References

  • S.J. Brookes and J.B. Moss, Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames, Combust. Flame 116 (1999), pp. 486–503.
  • D. Carbonell, A. Oliva, and C.D. Perez-Segarra, Implementation of two-equation soot flamelet model for laminar diffusion flames, Combust. Flame 156 (2009), pp. 621–632.
  • I.M. Aksit and J.B. Moss, A hybrid scalar model for sooting turbulent flames, Combust. Flame 145 (2006), pp. 231–244.
  • H. Pitsch, E. Riesmeier, and N. Peters, Unsteady Flamelet Modeling of Soot in Turbulent Diffusion Flames, Combust. Sci. Technol. 158 (2000), pp. 389–406.
  • A. Kronenburg, R.W. Bilger, and J.H. Kent, Modeling soot formation in turbulent-methane-air jet diffusion flames, Combust. Flame 121 (2000), pp. 24–40.
  • W. Kollmann, I.M. Kennedy, M. Metternich, and J.Y. Chen, Application of a soot model to a turbulent ethylene diffusion flame, in Soot Formation in Combustion, H. Bockhorn, ed., Springer-Verlag, Berlin, 1994, pp. 503–524.
  • R.P. Lindstedt and S.A. Louloudi, Joint-scalar transported PDF modeling of soot formation and oxidation, Proc. Combust. Inst. 30 (2005), pp. 775–783.
  • R.S. Mehta, D.C. Haworth, and M.F. Modest, Composition pdf/ Monte Carlo modeling of moderately sooting turbulent jet flames, Combust. Flame 157 (2010), pp. 982–994.
  • R.S. Mehta, M.F. Modest, and D.C. Haworth, Radiation characteristics and turbulence–radiation interactions in sooting turbulent jet flames, Combust. Theory Model. 14 (2010), pp. 105–124.
  • F. Mauss, K. Netzell, and H. Lehtiniem, Aspect of modeling soot formation in turbulent diffusion flames, Combust. Sci. Technol. 178 (2006), pp. 1871–1855.
  • Yunardi , R.M. Wholley, and M. Fairweather, Conditional moment closure prediction of soot formation in turbulent, nonpremixed ethylene flames, Combust. Flame 152 (2008), pp. 360–376.
  • R.M. Wholley, M. Fairweather, and Yunardi , Conditional moment closure modelling of soot formation in turbulent, non-premixed methane and propane flames, Fuel 88 (2009) 393–407.
  • S.B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (1985), pp. 119–192.
  • R.O. Fox, Computational models for turbulent reacting flows, Cambridge University Press, Cambridge, 2003.
  • D.C. Haworth, Progress in probability density function methods for turbulent reactive flows, Prog. Energy Combust. Ssci. 36 (2010), pp. 168–259.
  • D.C. Haworth and S.B. Pope, Transported probability density function methods for Reynolds-averaged and large-eddy simulations, in Turbulent Combustion Modeling Advances, New Trends and Perspectives, T. Echekki and E. Mastorakos, eds., Springer, Dordrecht, 2011.
  • V. Shabel'nikov and O. Soulard, Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars, Phys. Rev. E 72 (2005), pp. 016301.
  • L. Valiño, A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow, Flow Turbul. Combust. 60 (1998), pp. 157–172.
  • J. Jaishree and D.C. Haworth, Comparisons of Lagrangian and Eulerian PDF methods in simulations of non-premixed turbulent jet flames with moderate-to-strong turbulence-chemistry interactions, Combust. Theory Model. 16 (2012), pp. 435–463.
  • J. Jaishree, Lagrangian and Eulerian probability density function methods for turbulent reacting flows, Ph.D. thesis, The Pennsylvannia State Univesity, 2001.
  • X.S. Bai, M. Balthasar, F. Mauss, and L. Fuchs, Detailed soot modeling in turbulent jet diffusion flames, Proc. Combust. Inst. 27 (1998), pp. 1623–1630.
  • G. Ma, J.Z. Wen, F. Lightstone, and M.J. Thomson, Optimization of soot modeling in turbulent nonpremixed ethylene/air flames, Combust. Sci. Technol. 177 (2005), pp. 1567–1602.
  • R.P. Lindstedt, Simplified soot nucleation and surface growth steps for non-premixed flames, in Soot Formation in Combustion, H. Bockhorn, ed., Springer-Verlag, Berlin, 1994, p. 417–441.
  • A. Fuentes, R. Henriquez, F. Nmira, F. Liu, and J.L. Consalvi, Experimental and numerical study of the effects of the oxygen index on the radiation characteristics of laminar coflow diffusion flames, Combust. Flame 160 (2013), pp. 786–795.
  • S.J. Brookes and J.B. Moss, Measurements of soot production and thermal radiation from confined turbulent jet diffusion flames of methane, Combust. Flame 116 (1999), pp. 49–61.
  • J.H. Kent and D. Honnery, Modeling sooting turbulent jet flames using an extended flamelet technique, Combust. Sci. Technol. 54 (1987), pp. 383–397.
  • A. Coppalle and D. Joyeux, Temperature and soot volume fraction in turbulent diffusion flames: measurements of mean and fluctuating values, Combust. Flame 96 (1994), pp. 275–285.
  • K.J. Young, C.D. Stewart, K.J. Syed, and J.B. Moss, Soot formation on confined turbulent jet flame fuelled by pre-vaporized kerosene and by ethylene, Proc. Tenth ISABE Meeting, AIAA, Nottingham, 1991.
  • S.Y. Lee, S.R. Turns, and R.J. Santoro, Measurements of soot, OH, and PAH concentrations in turbulent ethylene/air jet flames, Combust. Flame 156 (2009) 2264–2275.
  • S.M. Mahmoud, G.J. Nathan, P.R. Medwell, B.B. Dally, and Z.T. Alwahabi, Simultaneous planar measurements of temperature and soot volume fraction in a turbulent non-premixed jet flame, Proc. Combust. Inst. 35 (2015) 1931–1938.
  • O. Nishida and S. Mukohara, Characteristics of soot formation and decomposition in turbulent diffusion flames, Combust. Flame 47 (1982), pp. 269–276.
  • L. Wang, N.E. Endrud, S.R. Turns, M.D. D'Agostini, and A.G. Slavejkov, A study of the influence of oxygen index on soot radiation and emission characteristics of turbulent jet flames, Combust. Sci. Technol. 174 (2002), pp. 45–72.
  • N.E. Endrud, Soot, radiation and pollutant emissions in oxygen-enhanced turbulent jet flames, Master's thesis, The Pennsylvannia State University, 2000.
  • A. Tewarson, Prediction of Fire Properties of Materials – Part I: Aliphatic and Aromatic Hydrocarbons and Related Polymers. Factory Mutual Research Corporation J.I 0K3R3.RC: (NBS Grant #60NANB4D-0043); 1986.
  • J.L. De Ris, P.K. Wu, and G. Heskestad, Fire radiation modeling, Proc. Combust. Inst. 28 (2000), pp. 2751–2759.
  • L. Li and P.B. Sunderland, Smoke points of fuel–fuel and fuel inert mixtures, Fire Safety J. 61 (2013), pp. 226–231.
  • M. Fairweather, W.P. Jones, H.S. Ledin, and R.P. Lindstedt, Predictions of soot formation in turbulent non-premixed propane flames, Proc. Combust. Inst. 24 (1992), pp. 1067–1074.
  • A. Heyl and H. Bockhorn, Flamelet Modeling of NO formation in laminar and turbulent diffusion flames, Chemosphere 42 (2001), pp. 449–462.
  • G. Hauke and L. Valiño, Computing reactive flows with a field Monte Carlo formulation and multi-scale methods, Comput. Meth. Appl. Mech. Eng. 193 (2004), pp. 1455–1470.
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Ener. Combust. Sci. 10 (1984), pp. 319–339.
  • Z. Qin, V.V. Lissianski, H. Yang, W.C. Gardiner, S.G. Scott, and H. Wang, Combustion chemistry of propane: a case study of detailed reaction mechanism optimization, Proc. Combust. Inst. 28 (2000), pp. 1663–1669.
  • D. Carbonell, C.D. Perez-Segarra, P.J. Coelho, and A. Oliva, Flamelet mathematical models for non-premixed laminar combustion, Combust. Flame 156 (2009), pp. 334–347.
  • J. Nagle and R.F. Strickland-Constable, Oxidation of carbon between 1000–2000°C, Proc. 5th conference on carbon, Pergamon Press, London, pp. 154–164, 1962.
  • C.P. Fenimore and G.W. Jones, Oxidation of soot by hydroxyl radicals, J. Phys. Chem. 71 (1967), pp. 593–597.
  • K.G. Neoh, J.B. Howard, and A.F. Sarofim. Effects of oxidation on the physical structure of soot, Proc. Combust. Inst. 20 (1985), 951–957.
  • F. Xu, A.M. El-Leathy, C.H. Kim, and G.M. Faeth. Soot surface oxidation in hydrocarbon/air diffusion flames at atmospheric pressure, Combust. Flame 132 (2003), 43–57.
  • H. Guo, F. Liu, G. Smallwood, and Ö.L. Gülder, Numerical study on the influence of hydrogen addition on soot formation in a laminar ethylene–air diffusion flame, Combust. Flame 145 (2006), 324–338.
  • M.F. Modest, Radiative Heat Transfer, Second ed., Academic Press, New York, 2003.
  • H. Chang and T. Charalampopoulos, Determination of the wavelength dependence of refractive indices of flame soot, Proc. R. Soc. 430 (1990), pp. 577–591.
  • S.A. Tashkun, V.I. Perevalov, J.L. Teffo, A.D. Bykov, and N.N. Lavrentieva, CDSD-1000, the high-temperature carbon dioxide spectroscopic databank, J. Quant. Spectrosc. Radiat. Transfer 82 (2003), pp. 165–196.
  • L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, and J. Tennyson, HITEMP: the high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer 111 (2010), pp. 2139–2150.
  • F. Liu, G.J. Smallwood, and Ö.L. Gülder, Application of the statistical narrow-band correlated method to non-grey gas radiation in CO2-H2O mixtures: approximate treatments of overlapping bands, J. Quant. Spectrosc. Radiat. Tranf. 68 (2001), pp. 401–417.
  • M.F. Modest and R.J. Riazzi, Assembly full spectrum k-distribution from a narrow band database: effects of mixing gases, gases and non-gray absorpting particles and non-gray scatters in non-gray enclosures, J. Quant. Spectrosc. Radiat. Trans. 90 (2005), pp. 169–189.
  • R. Demarco, J.L. Consalvi, A. Fuentes, and S. Melis, Assessment of radiative property models in non-gray sooting media, Int. J. Therm. Sci. 50 (2011), pp. 1672–1684.
  • P.J. Coelho, Numerical simulation of the interaction between turbulence and radiation in reactive flows, Prog. Ener. Combust. Sci. 33 (2007), pp. 311–383.
  • B.P. Leonard and J.E. Drummond, Why you should not use hybrid, power-law or related exponential schemes for convective modelling. there are much better alternatives, Int. J. Numer. Method Fluids 20 (1995), pp. 421–442.
  • W.K. Chow and Y.L. Cheung, Selection of differencing scheme on simulating the sprinkler hot-air layer problem, Numer. Heat Trans. – Part A 35 (1999), pp. 311–330.
  • A. Garmory, Micromixing effects in atmospheric reacting flows, Ph.D. thesis, Cambridge, 2007.
  • E.H. Chui, G.D. Raithby, and P.M.J. Hughes, Prediction of radiative transfer in cylindrical enclosures with the finite volume method, J. Thermophys. Heat Trans. 6 (1992), pp. 605–611.
  • C.P. Leundsen and N. Peters, Experimental and numerical analysis of the influence of oxygen on soot formation in laminar counterflow flames of acetylene, Proc. Combust. Inst. 28 (2000), pp. 2619–2625.
  • A. Beltrame, P. Porshnev, W. Merchan-Merchan, A. Saveliev, A. Fridman, L.A. Kennedy, O. Petrova, Z. Zhdanok, F. Amouri, and O. Charon, Soot and No formation in methane-oxygen enriched diffusion flames, Combust. Flame 124 (2001), pp. 295–310.
  • K.O. Lee, C.M. Megaridis, S. Zelepouga, A. Saveliev, L.A. Kennedy, O. Charon, and F. Ammouri, Soot formation effects of oxygen concentration in the oxidizer stream of laminar coannular nonpremixed methane/air flames, Combust. Flame 121 (2000), pp. 323–333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.