243
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Modelling of the subgrid scale wrinkling factor for large eddy simulation of turbulent premixed combustion

, , , , &
Pages 393-409 | Received 10 Jul 2015, Accepted 09 Dec 2015, Published online: 29 Jan 2016

References

  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, RT Edwards, Philadelphia, PA, 2005.
  • O. Colin, F. Ducros, D. Veynante, and T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12 (2000), pp. 1843–1863.
  • F. Charlette, C. Meneveau, and D. Veynante, A power-law flame wrinkling model for LES of premixed turbulent combustion – Part I: Non-dynamic formulation and initial tests, Combust. Flame 131 (2002), pp. 159–180.
  • H. Pitsch and L. Duchamp de Lageneste, Large-eddy simulation of premixed turbulent combustion using a level-set approach, Proc. Combust. Inst. 29 (2002), pp. 2001–2008.
  • H. Pitsch, A consistent level set formulation for large-eddy simulation of premixed turbulent combustion, Combust. Flame 143 (2005), pp. 587–598.
  • B. Fiorina, R. Vicquelin, P. Auzillon, N. Darabiha, O. Gicquel, and D. Veynante, A filtered tabulated chemistry model for LES of premixed combustion, Combust. Flame 157 (2010), pp. 465–475.
  • C. Meneveau and T. Poinsot, Stretching and quenching of flamelets in premixed turbulent combustion, Combust. Flame 86 (1991), pp. 311–332.
  • S. Bougrine, S. Richard, O. Colin, and D. Veynante, Fuel composition effects on flame stretch in turbulent premixed combustion: Numerical analysis of flame–vortex interaction and formulation of a new efficiency function, Flow Turbul. Combust. 93 (2014), pp. 259–281.
  • T. Poinsot, D. Veynante, and S. Candel, Quenching processes and premixed turbulent combustion diagrams, J. Fluid Mech. 228 (1991), pp. 561–606.
  • T. Poinsot, D. Veynante, and S. Candel, Diagrams of premixed turbulent combustion based on direct simulation, Symp. (Int.) Combust. 23 (1991), pp. 613–619.
  • H. Tennekes and J.L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, MA, 1972.
  • H. Tennekes, Eulerian and Lagrangian time microscales in isotropic turbulence, J. Fluid Mech. 67 (1975), pp. 561–567.
  • W.L. Roberts and J.F. Driscoll, A laminar vortex interacting with a premixed flame: Measured formation of pockets of reactants, Combust. Flame 87 (1991), pp. 245–256.
  • N. Malik and J. Vassilicos, Eulerian and Lagrangian scaling properties of randomly advected vortex tubes, J. Fluid Mech. 326 (1996), pp. 417–436.
  • C. Poulain, N. Mazellier, L. Chevillard, Y. Gagne, and C. Baudet, Dynamics of spatial Fourier modes in turbulence, Eur. Phys. J. B 53 (2006), pp. 219–224.
  • E.R. Hawkes, O. Chatakonda, H. Kolla, A.R. Kerstein, and J.H. Chen, A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence, Combust. Flame 159 (2012), pp. 2690–2703.
  • C. Angelberger, D. Veynante, F. Egolfopoulos, and T. Poinsot, Large eddy simulations of combustion instabilities in premixed flames, in Proceedings of the 1998 Summer Program, Center for Turbulence Research, Stanford University, pp. 61–81. Available at https://web.stanford.edu/group/ctr/ctrsp98/angelberger.pdf.
  • C. Fureby, A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion, Proc. Combust. Inst. 30 (2005), pp. 593–601.
  • F. Thiesset, L. Danaila, and R.A. Antonia, Dynamical effect of the total strain induced by the coherent motion on local isotropy in a wake, J. Fluid Mech. 720 (2013), pp. 393–423.
  • T. Kármán and L. Howarth, On the statistical theory of isotropic turbulence, Proc. Roy. Soc. Lond. A 164 (917) (1938), pp. 192–215. Available at http://www.jstor.org/stable/97087.
  • A. Kolmogorov, Dissipation of energy in locally isotropic turbulence, Dokl. Akad. Nauk. SSSR 125 (1941), pp. 15–17.
  • L. Danaila, R.A. Antonia, and P. Burattini, Progress in studying small-scale turbulence using ‘exact’ two-point equations, New J. Phys. 6 (2004), p. 128. Available at http://iopscience.iop.org/article/10.1088/1367-2630/6/1/128/pdf.
  • N. Peters, Laminar flamelet concepts in turbulent combustion, Symp. (Int.) Combust. 21 (1986), pp. 1231–1250.
  • R.A. Antonia, R.J. Smalley, T. Zhou, F. Anselmet, and L. Danaila, Similarity of energy structure functions in decaying homogeneous isotropic turbulence, J. Fluid Mech. 487 (2003), pp. 245–269.
  • G.K. Batchelor, Pressure fluctuations in isotropic turbulence, Proc. Camb. Phi. Soc. 47 (1951), pp. 359–374.
  • S. Kurien and K.R. Sreenivasan,Anisotropic scaling contributions to high-order structure functions in high-Reynolds-number turbulence., Phys. Rev. E 62 (2000), pp. 2206–2212.
  • K.G. Aivalis, K.R. Sreenivasan, Y. Tsuji, J. Klewicki, and C.A. Biltoft, Temperature structure functions for air flow over moderately heated ground, Phys. Fluids 14 (2002), pp. 2439–2446.
  • S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.
  • Y.H. Pao, Structure of turbulent velocity and scalar fields at large wavenumbers, Phys. Fluids 8 (1965), pp. 1063–1075.
  • P. Yeung, S. Girimaji, and S. Pope, Straining and scalar dissipation on material surfaces in turbulence: Implications for flamelets, Combust. Flame 79 (1990), pp. 340–365.
  • S. Goto and S. Kida, Reynolds-number dependence of line and surface stretching in turbulence: Folding effects, J. Fluid Mech. 586 (2007), pp. 59–81.
  • F. Gouldin, S. Hilton, and T. Lamb, Experimental evaluation of the fractal geometry of flamelets, Symp. (Int.) Combust. 22 (1989), pp. 541–550.
  • G. North and D. Santavicca, The fractal nature of premixed turbulent flames, Combust. Sci. Technol. 72 (1990), pp. 215–232.
  • O. Chatakonda, E.R. Hawkes, A.J. Aspden, A.R. Kerstein, H. Kolla, and J.H. Chen, On the fractal characteristics of low Damköhler number flames, Combust. Flame 160 (2013), pp. 2422–2433.
  • F. Gouldin, An application of fractals to modeling premixed turbulent flames, Combust. Flame 68 (1987), pp. 249–266.
  • A.R. Kerstein, Fractal dimension of turbulent premixed flames, Combust. Sci. Technol. 60 (1988), pp. 441–445.
  • N. Peters and C. Franke, The fractal concept of turbulent flames, in Dissipative Structures in Transport Processes and Combustion, Springer, Berlin, 1990, pp. 40–50.
  • G. Batchelor, The effect of homogeneous turbulence on material lines and surfaces, Proc. Roy. Soc. Lond. A 213 (1952), pp. 349–366.
  • H. Kobayashi, T. Kawahata, K. Seyama, T. Fujimari, and J.S. Kim, Relationship between the smallest scale of flame wrinkles and turbulence characteristics of high-pressure, high-temperature turbulent premixed flames, Proc. Combust. Inst. 29 (2002), pp. 1793–1800.
  • S. Menon and A.R. Kerstein, Stochastic simulation of the structure and propagation rate of turbulent premixed flames, Symp. (Int.) Combust. 24 (1992), pp. 443–450.
  • R. Fragner, N. Mazellier, F. Halter, C. Chauveau, and I. Gökalp, Multi scale high intensity turbulence generator applied to a high pressure turbulent burner, Flow Turbul. Combust. 94(1) (2014), pp. 1–21.
  • R. Fragner, F. Halter, N. Mazellier, C. Chauveau, and I. Gökalp, Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames, Proc. Combust. Inst. 35(2) (2015), pp. 1527–1535.
  • R.J. Kee, J.F. Grcar, M. Smooke, J. Miller, and E. Meeks, PREMIX: a Fortran program for modeling steady laminar one-dimensional premixed flames, Tech. Rep. SAND85-8240, Sandia National Laboratories, Livermore, CA, 1985.
  • R.J. Kee, F.M. Rupley, and J.A. Miller, The CHEMKIN thermodynamic data base, Tech. Rep., Sandia National Laboratories, Livermore, CA, 1990.
  • G. Smith, D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C. Bowman, R. Hanson, S. Song, W. Gardiner, et al., Gri-mechÑan optimized detailed chemical reaction mechanism for methane combustion, Tech. Rep., Gas Research Institute, 1999. Available at http://www.me.berkeley.edu/gri_mech.
  • E.R. Hawkes, R. Sankaran, and J.H. Chen, Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements, Proc. Combust. Inst. 33 (2011), pp. 1447–1454.
  • F. Halter, C. Chauveau, I. Gökalp, and D. Veynante, Analysis of flame surface density measurements in turbulent premixed combustion, Combust. Flame 156 (2009), pp. 657–664.
  • D. Veynante, G. Lodato, P. Domingo, L. Vervisch, and E.R. Hawkes, Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion, Expts Fluids 49 (2010), pp. 267–278.
  • N. Chakraborty and E.R. Hawkes, Determination of 3D flame surface density variables from 2D measurements: Validation using direct numerical simulation, Phys. Fluids 23 (2011), Paper No. 065113. Available at http://dx.doi.org/10.1063/1.3601483.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.