507
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

LES/PDF for premixed combustion in the DNS limit

&
Pages 834-865 | Received 26 Sep 2015, Accepted 05 May 2016, Published online: 16 Jun 2016

References

  • S.B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (1985), pp. 119–192.
  • D.C. Haworth, Progress in probability density function methods for turbulent reacting flows, Prog. Energy Combust. Sci. 36 (2010), pp. 168–259.
  • S.B. Pope, Small scales, many species and the manifold challenges of turbulent combustion, Proc. Combust. Inst. 34 (2013), pp. 1–31.
  • F.A. Jaberi, P.J. Colucci, S. James, P. Givi and S.B. Pope, Filtered mass density function for large-eddy simulation of turbulent reacting flows, J. Fluid Mech. 401 (1999), pp. 85–121.
  • V. Raman and H. Pitsch, A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry, Proc. Combust. Inst. 31 (2007), pp. 1711–1719.
  • Y. Yang, H. Wang, S.B. Pope and J.H. Chen, Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame, Proc. Combust. Inst. 34 (2013), pp. 1241–1249.
  • I.A. Dodoulas and S. Navarro-Martinez, Large eddy simulation of premixed turbulent flames using the probability density function approach, Flow Turbul. Combust. 90 (2013), pp. 645–678. Available at http://dx.doi.org/10.1007/s10494-013-9446-z.
  • J. Kim and S.B. Pope, Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using large-eddy simulation/probability density function, Combust. Theory Model. 18 (2014), pp. 388–413.
  • S.B. Pope and R. Tirunagari, Advances in probability density function methods for turbulent reactive flows, in Proceedings of the Nineteenth Australasian Fluid Mechanics Conference, RMIT University, Melbourne, 2014.
  • R.R. Tirunagari and S.B. Pope, An investigation of turbulent premixed counterflow flames using large-eddy simulations and probability density function methods, Combust. Flame 166 (2016), pp. 229–242.
  • S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, UK, 2000.
  • H. Pitsch, Large-eddy simulation of turbulent combustion, Annu. Rev. Fluid. Mech. 38 (2006), pp. 453–482.
  • S.B. Pope, Self-conditioned fields for large-eddy simulations of turbulent flows, J. Fluid Mech. 652 (2010), pp. 139–169.
  • R.S. Rogallo and P. Moin, Numerical simulation of turbulent flows, Annu. Rev. Fluid. Mech. 17 (1985), pp. 99–137.
  • R.O. Fox, Computational Models for Turbulent Reactive Flows, Cambridge University Press, New York, 2003.
  • S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys. 6 (2004), Article No. 35. Available at http://dx.doi.org/10.1088/1367-2630/6/1/035.
  • K.A. Kemenov and S.B. Pope, Molecular diffusion effects in LES of a piloted methane–air flame, Combust. Flame 157 (2011), pp. 240–254.
  • R.S. Barlow and J.H. Frank, Effects of turbulence on species mass fraction in methane/air jet flames, Proc. Combust. Inst. 27 (1998), pp. 1087–1095.
  • O.T. Stein, B. Boehm, A. Dreizler and A.M. Kempf, Highly-resolved LES and PIV analysis of isothermal turbulent opposed jets for combustion applications, Flow Turbul. Combust. 87 (2011), pp. 425–447.
  • A.M. Ruiz, G. Lacaze and J.C. Oefelein, Flow topologies and turbulence scales in a jet-in-cross-flow, Phys. Fluids 27 (2015), Article ID 045101. Available at http://dx.doi.org/10.1063/1.4915065.
  • J. Villermaux and J.C. Devillon, Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d’interaction phénoménologique, in Proceedings of the 2nd International Symposium on Chemical Reaction Engineering, 2–4 May 1972, Amsterdam. Elsevier, New York, 1972, pp. B1–B13.
  • R.J. Kee, F.M. Rupley, J.A. Miller, M.E. Coltrin, J.F. Grcar, E. Meeks, H.K. Moffat, A.E. Lutz, G. Dixon-Lewis, M.D. Smooke, J. Warnatz, G.H. Evans, R.S. Larson, R.E. Mitchell, L.R. Petzold, W.C. Reynolds, M. Caracotsios, W.E. Stewart, P. Glarborg, C. Wang and O. Adigun, CHEMKIN Collection, Release 3.6, Reaction Design, San Diego, CA, 2000.
  • S.B. Pope, Computations of turbulent combustion: progress and challenges, Proc. Combust. Inst. 23 (1990), pp. 591–612.
  • P.J. Colucci, F.A. Jaberi, P. Givi and S.B. Pope, Filtered density function for large eddy simulation of turbulent reacting flows, Phys. Fluids 10 (1998), pp. 499–515.
  • R. McDermott and S.B. Pope, A particle formulation for treating differential diffusion in filtered density function methods, J. Comput. Phys. 226 (2007), pp. 947–993.
  • S. Viswanathan, H. Wang and S.B. Pope, Numerical implementation of mixing and molecular transport in LES/PDF studies of turbulent reacting flows, J. Comput. Phys. 230 (2011), pp. 6916–6957.
  • C.J. Sung, C.K. Law and J.Y. Chen, An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation, Proc. Combust. Inst. 27 (1998), pp. 295–304.
  • R.J. Kee, M.E. Coltrin and P. Glarborg, Chemically Reacting Flow: Theory and Practice, Wiley, Hoboken, NJ, 2003.
  • O. Desjardins, G. Blanquart, G. Balarac and H. Pitsch, High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys. 227 (2008), pp. 7125–7159.
  • H. Wang and S.B. Pope, Large eddy simulation/probability density function modeling of a turbulent CH4/H2/N2 jet flame, Proc. Combust. Inst. 33 (2011), pp. 1319–1330.
  • S.B. Pope, A model for turbulent mixing based on shadow-position conditioning, Phys. Fluids 25 (2013), Article ID 110803. Available at http://dx.doi.org/10.1063/1.4818981.
  • S.B. Pope and R. Gadh, Fitting noisy data using cross-validated cubic smoothing splines, Commun. Stat. Simul. Comput. 17 (1988), pp. 349–376.
  • M. Muradoglu, S.B. Pope and D.A. Caughey, The hybrid method for the PDF equations of turbulent reactive flows: consistency conditions and correction algorithms, J. Comput. Phys. 172 (2001), pp. 841–878.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.