1,902
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

Simulations of laminar non-premixed flames of kerosene with hot combustion products as oxidiser

, &
Pages 958-973 | Received 31 Oct 2015, Accepted 23 May 2016, Published online: 06 Jul 2016

References

  • A. Cavaliere and M. de Joannon, MILD combustion, Prog. Energy Combust. Sci. 30 (2004), pp. 329–366.
  • M. de Joannon, P. Sabia, G. Sorrentino, and A. Cavaliere, Numerical study of MILD combustion in hot diluted diffusion ignition (HDDI) regime, Proc. Combust. Inst. 32 (2009), pp. 3147–3154.
  • M. de Joannon, G. Sorrentino, and A. Cavaliere, MILD combustion in diffusion-controlled regimes of hot diluted fuel, Combust. Flame 159 ( 5) (2012), pp. 1832–1839.
  • J. Sidey, R. Gordon, and E. Mastorakos, Simulations of autoignition and laminar premixed flames in methane/air mixtures diluted with hot products, Combust. Sci. Technol. 186 (2014), pp. 453–465.
  • B. Coriton, M.D. Smooke, and A. Gomez, Effect of the composition of the hot product stream in the quasi-steady extinction of strained premixed flames, Combust. Flame 157 (11) (2010), pp. 2155–2164.
  • J. Sidey and E. Mastorakos, Simulations of laminar non-premixed flames of methane with hot combustion products as oxidiser, Combust. Flame 163 (2016), pp. 1–11. Available at http://dx.doi.org/10.1016/j.combustflame.2015.07.034.
  • J. Sidey, Experimental and numerical investigations of highly preheated and diluted flames, Ph.D. thesis, University of Cambridge, 2015.
  • P. Sabia, M. de Joannon, S. Fierro, A. Tregrossi, and A. Cavaliere, Hydrogen-enriched methane MILD combustion in a well stirred reactor, Exp. Thermal Fluid Sci. 31 (2007), pp. 469–475.
  • E. Mastorakos, A.M.K.P. Taylor, and J.H. Whitelaw, Extinction of turbulent counterflow flames with reactants diluted by hot products, Combust. Flame 102 (1995), pp. 101–114.
  • G. Choi and M. Katsuki, Chemical kinetic study on the reduction of nitric oxide in highly preheated air combustion, Proc. Combust. Inst. 29 (2002), pp. 1165–1171.
  • A. Sepman, S. Abtahizadeh, A. Mokhov, J. van Oijen, H. Levinsky, and L. de Goey, Numerical and experimental studies of the NO formation in laminar coflow diffusion flames on their transition to MILD combustion regime, Combust. Flame 160 (8) (2013), pp. 1364–1372.
  • E. Abtahizadeh, J. van Oijen, and P. de Goey, Numerical study of MILD combustion with entrainment of burned gas into oxidizer and/or fuel streams, Combust. Flame 159 (6) (2012), pp. 2155–2165.
  • E. Abtahizadeh, A. Sepman, F. Hernández-Pérez, and J. van Oijen, Numerical and experimental investigations on the influence of preheating and dilution on transition of laminar coflow diffusion flames into MILD combustion regime, Combust. Flame 160 (2013), pp. 2359–2374.
  • G. Sorrentino, D. Scarpa, and A. Cavaliere, Transient inception of MILD combustion in hot diluted diffusion ignition (HDDI) regime: A numerical study, Proc. Combust. Inst. 34 (2013), pp. 3239–3247.
  • B. Coriton, J.H. Frank, and A. Gomez, Effects of strain rate, turbulence, reactant stoichiometry and heat losses on the interaction of turbulent premixed flames with stoichiometric counterflowing combustion products, Combust. Flame 160 (2013), pp. 2442–2456.
  • E. Oldenhof, M.J. Tummers, E.H. van Veen, and D.J.E.M. Roekaerts, Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames, Combust. Flame 157 (2010), pp. 1167–1179.
  • E. Oldenhof, M.J. Tummers, E.H. van Veen, and D.J.E.M. Roekaerts, Role of entrainment in the stabilisation of jet-in-hot-coflow flames, Combust. Flame 158 (2011), pp. 1553–1563.
  • E. Oldenhof, M.J. Tummers, E.H. van Veen, and D.J.E.M. Roekaerts, Transient response of the Delft jet-in-hot-coflow flames, Combust. Flame 159 (2012), pp. 697–706. Available at http://dx.doi.org/10.1016/j.combustflame.2011.08.001.
  • P.R. Medwell, P.A.M. Kalt, and B.B. Dally, Simultaneous imaging of OH, formaldehyde, and temperature of turbulent nonpremixed jet flames in a heated and diluted coflow, Combust. Flame 148 (2007), pp. 48–61.
  • P.R. Medwell and B.B. Dally, Effect of fuel composition on jet flames in a heated and diluted oxidant stream, Combust. Flame 159 (10) (2012) pp. 3138–3145.
  • J. Sidey and E. Mastorakos, Visualization of MILD combustion from jets in cross-flow, Proc. Combust. Inst. 35 (3) (2015), pp. 3537–3545.
  • P. Dagaut and M. Cathonnet, The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling, Prog. Energy Combust. Sci. 32 (1) (2006), pp. 48–92.
  • J.A. Cooke, M. Bellucci, M.D. Smooke, A. Gomez, A. Violi, T. Faravelli, and E. Ranzi, Computational and experimental study of JP-8, a surrogate, and its components in counterflow diffusion flames, Proc. Combust. Inst. 30 (1) (2005) pp. 439–446.
  • P.M. Patterson, A.G. Kyne, M. Pourkashanian, A. Williams, and C.W. Wilson, Combustion of kerosene in counterflow diffusion flames, J. Propul. Power 17 (2) (2000), pp. 453–460.
  • P. Dagaut and M. Cathonnet, The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling, Prog. Energy Combust. Sci. 32 (1) (2006), pp. 48–92.
  • H. Bufferand, L. Tosatto, B.L. Mantia, M. Smooke, and A. Gomez, Experimental and computational study of methane counterflow diffusion flames perturbed by trace amounts of either jet fuel or a 6-component surrogate under non-sooting conditions, Combust. Flame 156 (8) (2009), pp. 1594–1603.
  • F. Carbone and A. Gomez, Chemical interactions between 1,2,4-trimethylbenzene and n-decane in doped counterflow gaseous diffusion flames, Proc. Combust. Inst. 35 (1) (2015), pp. 761–769.
  • S. Honnet, K. Seshadri, U. Niemann, and N. Peters, A surrogate fuel for kerosene, Proc. Combust. Inst. 32 (1) (2009), pp. 485–492.
  • H.C. Rodrigues, M.J. Tummers, E.H. van Veen, and D.J.E.M. Roekaerts, Spray flame structure in conventional and hot-diluted combustion regime, Combust. Flame 162 (3) (2015), pp. 759–773.
  • M. Nakamura, D. Nishioka, J. Hayashi, and F. Akamatsu, Soot formation, spray characteristics, and structure of jet spray flames under high pressure, Combust. Flame 158 (8) (2011), pp. 1615–1623.
  • G. Yu, J. Li, J. Zhao, L. Yue, X. Chang, and C.-J. Sung, An experimental study of kerosene combustion in a supersonic model combustor using effervescent atomization, Proc. Combust. Inst. 30 (2) (2005), pp. 2859–2866.
  • G.C. Gebel, T. Mosbach, W. Meier, and M. Aigner, Optical and spectroscopic diagnostics of laser-induced air breakdown and kerosene spray ignition, Combust. Flame 162 (4) (2015), pp. 1599–1613.
  • H.N. Najm, P.H. Paul, C.J. Mueller, and P.S. Wyckoff, On the adequacy of certain experimental observables as measurements of flame burning rate, Combust. Flame 113 (1998), pp. 312–332.
  • P.H. Paul and H.N. Najm, Planar laser-induced fluorescence imaging of flame heat release rate, Proc. Combust. Inst. 27 (1998), pp. 43–50.
  • J. Kariuki, A. Dowlut, R. Yuan, R. Balachandran, and E. Mastorakos, Heat release imaging in turbulent premixed methane–air flames close to blow-off, Proc. Combust. Inst. 35 (2) (2015), pp. 1443–1450.
  • R. Yuan, J. Kariuki, A. Dowlut, R. Balachandran, and E. Mastorakos, Reaction zone visualisation in swirling spray n-heptane flames, Proc. Combust. Inst. 35 (2) (2015), pp. 1649–1656.
  • Y. Minamoto and N. Swaminathan, Scalar gradient behaviour in MILD combustion, Combust. Flame 161 (4) (2014), pp. 1063–1075.
  • Z.M. Nikolaou and N. Swaminathan, Heat release rate markers for premixed combustion, Combust. Flame 161 (12) (2014), pp. 3073–3084.
  • P. Dagaut, On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel, Phys. Chem. Chem. Phys. 4 (11) (2002), pp. 2079–2094.
  • R. Bilger, S. Stårner, and R. Kee, On reduced mechanisms for methane–air combustion in nonpremixed flames, Combust. Flame 80 (2) (1990), pp. 135–149.
  • M. de Joannon, P. Sabia, G. Cozzolino, G. Sorrentino, and A. Cavaliere, Pyrolitic and oxidative structures in hot oxidant diluted oxidant (HODO) MILD combustion, Combust. Sci. Technol. 184 (2012), pp. 1207–1218. Available at http://dx.doi.org/10.1080/00102202.2012.664012.
  • COSILAB, Cosilab collection, version 3.3.2, Rotexo-Softpredict-Cosilab, Bad Zwischenahn, Germany; software available at http://www.SoftPredict.com.
  • M. de Joannon, A. Matarazzo, P. Sabia, and A. Cavaliere, MILD Combustion in Homogeneous Charge Diffusion Ignition (HCDI) regime, Proc. Combust. Inst. 31 (2007), pp. 3409–3416. Available at http://dx.doi.org/10.1016/j.proci.2006.07.039.
  • Y. Minamoto, T.D. Dunstan, N. Swaminathan, and R.S. Cant, DNS of EGR-type turbulent flame in MILD combustion, Proc. Combust. Inst. 34 (2013), pp. 3231–3238.
  • Y. Minamoto, N. Swaminathan, S.R. Cant, and T. Leung, Morphological and statistical features of reaction zones in MILD and premixed combustion, Combust. Flame 161 (11) (2014), pp. 2801–2814.
  • K. Bray, M. Champion, and P.A. Libby, Extinction of premixed flames in turbulent counterflowing streams with unequal enthalpies, Combust. Flame 107 (1-2) (1996), pp. 53–64.
  • N. Darabiha and S. Candel, The influence of the temperature on extinction and ignition limits of strained hydrogen–air diffusion flames, Combust. Sci. Technol. 86 (1-6) (1992), pp. 67–85. Available at http://dx.doi.org/10.1080/00102209208947188.
  • C.K. Law, Combustion, Cambridge University Press, New York, 2006.
  • T. Plessing, N. Peters, and J. G. Wünning, Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation, Proc. Combust. Inst. 27 (1998), pp. 3197–3204.