394
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

A kinetics-based method for constraint selection in rate-controlled constrained equilibrium

, , , &
Pages 159-182 | Received 06 Nov 2015, Accepted 12 May 2016, Published online: 08 Jul 2016

References

  • S.B. Pope, Small scales, many species and the manifold challenges of turbulent combustion, Proc. Combust. Inst. 34(1) (2013), pp. 1–31.
  • M.D. Smooke (ed.), Reduced Kinetic Mechanisms and Asymptotic Approximations for Methane–Air Flames, Springer, Berlin Heidelberg, 1991.
  • J.Y. Chen, A general procedure for constructing reduced reaction mechanisms with given independent relations, Combust. Sci. Technol. 57(1–3) (1988), pp. 89–94.
  • J.D. Ramshaw, Partial chemical equilibrium in fluid dynamics, Phys. Fluids 23(4) (1980), pp. 675–680.
  • M. Rein, The partial-equilibrium approximation in reacting flows, Phys. Fluids A 4(5) (1992), pp. 873–886.
  • J.C. Keck, D. Gillespie, Rate-controlled partial-equilibrium method for treating reacting gas mixtures, Combust. Flame 17(2) (1971), pp. 237–241.
  • J.C. Keck, Rate-controlled constrained-equilibrium theory of chemical-reactions in complex-systems, Prog. Energy Combust. Sci. 16(2) (1990), pp. 125–154.
  • U. Maas, S.B. Pope, Simplifying chemical kinetics – intrinsic low-dimensional manifolds in composition space, Combust. Flame 88(3–4) (1992), pp. 239–264.
  • S.B. Pope, U. Maas, Simplifying chemical kinetics: Trajectory-generated low-dimensional manifolds, Cornell Report FDA 93-11, 1993.
  • Z. Ren, S.B. Pope, Species reconstruction using pre-image curves, Proc. Combust. Inst. 30 (2005), pp. 1293–1300.
  • Z. Ren, S.B. Pope, A. Vladimirsky, J.M. Guckenheimer, The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics, J. Chem. Phys. 124(11) (2006), p. 114111.
  • S.H. Lam, Using CSP to understand complex chemical kinetics, Combust. Sci. Technol. 89(5–6) (1993), pp. 375–404.
  • S.H. Lam, D.A. Goussis, The CSP method for simplifying kinetics, Int. J. Chem. Kinet. 26(4) (1994), pp. 461–486.
  • T.F. Lu, Y.G. Ju, C.K. Law, Complex CSP for chemistry reduction and analysis, Combust. Flame 126(1–2) (2001), pp. 1445–1455.
  • M. Valorani, S. Paolucci, The G-Scheme: A frame work for multi-scale adaptive model reduction, J. Comput. Phys. 228(2009), pp. 4665–4701.
  • E. Chiavazzo, I.V. Karlin, Adaptive simplification of complex multiscale systems, Phys. Rev. E 83(2011), 036706.
  • E. Chiavazzo, Approximation of slow and fast dynamics in multiscale dynamical systems by the linearized Relaxation Redistribution Method, J. Comput. Phys. 231 (2012), pp. 1751–1765.
  • M. Kooshkbaghi, C.E. Frouzakis, E. Chiavazzo, K. Boulouchos, I.V. Karlin, The global relaxation redistribution method for reduction of combustion kinetics, J. Chem. Phys. 141 (2014), 044102.
  • I.G. Kevrekidis, C.W. Gear, G. Hummer, Equation-Free: the global computer-aided analysis of complex multiscale systems, AIChE J. 50(7) (2004), pp. 1346–1355.
  • E. Chiavazzo, C.W. Gear, C.J. Dsilva, N. Rabin, I.G. Kevrekidis, Reduced models in chemical kinetics via nonlinear data-mining, processes, 2 (2014), pp. 112–140.
  • V. Bykov, U. Maas, Problem adapted reduced models based on Reaction-Diffusion Manifolds (REDIMs), Proc. Combut. Inst. 32 (2009), pp. 561–568.
  • V. Bykov, A. Neagos, U. Maas, On transient behavior of non-premixed counter-flow diffusion flames within the REDIM based model reduction concept, Proc. Combut. Inst. 34 (2013), pp. 197–203.
  • M.J. Davis, R.T. Skodje, Geometric investigation of low-dimensional manifolds in systems approaching equilibrium, J. Chem. Phys. 111 (3) (1999), pp. 859–874.
  • S. J. Fraser, The steady state and equilibrium approximations: A geometrical picture, J. Chem. Phys. 88(8) (1988), pp. 4732–4738.
  • M.R. Roussel, S.J. Fraser, Geometry of the steady-state approximation: Perturbation and accelerated convergence methods, J. Chem. Phys. 93(2) (1990), pp. 1072–1081.
  • M.R. Roussel, S.J. Fraser, Global analysis of enzyme inhibition kinetics, J. Phys. Chem. 97(31) (1993), pp. 8316–8327.
  • Z. Ren, S.B. Pope, The geometry of reaction trajectories and attracting manifolds in composition space, Combust. Theory Model. 10(3) (2006), pp. 361–388.
  • A.N. Gorban, I.V. Karlin, Method of invariant manifold for chemical kinetics, Chem. Eng. Sci. 58 (21) (2003), pp. 4751–4768.
  • D. Lebiedz, Computing minimal entropy production trajectories: An approach to model reduction in chemical kinetics, J. Chem. Phys. 120(15) (2004), pp. 6890–6897.
  • S. Ugarte, Y. Gao, H. Metghalchi, Application of the maximum entropy principle in the analysis of a non-equilibrium chemically reacting mixture, Int. J. Thermodynamics 8(1) (2005), pp. 43–53.
  • V. Yousefian, A rate-controlled constrained-equilibrium thermochemistry algorithm for complex reacting systems, Combust. Flame 115(1–2) (1998), pp. 66–80.
  • D. Hamiroune, P. Bishnu, M. Metghalchi, J.C. Keck, Rate-controlled constrained-equilibrium method using constraint potentials, Combust. Theory Model. 2(1) (1998), pp. 81–94.
  • Q. Tang, S.B. Pope, Implementation of combustion chemistry by in situ adaptive tabulation of rate-controlled constrained equilibrium manifolds, Proc. Combust. Inst. 29 (2002), pp. 1411–1417.
  • Q. Tang, S.B. Pope, A more accurate projection in the rate-controlled constrained-equilibrium method for dimension reduction of combustion chemistry, Combust. Theory Model. 8(2) (2004), pp. 255–279.
  • W.P. Jones, S. Rigopoulos, Rate-controlled constrained equilibrium: Formulation and application to nonpremixed laminar flames, Combust. Flame 142(3) (2005), pp. 223–234.
  • S. Rigopoulos, The rate-controlled constrained equilibrium (RCCE) method for reducing chemical kinetics in systems with time-scale separation, Int. J. Multiscale Comput. Eng. 5 (1) (2007), pp. 11–18.
  • M. Janbozorgi, H. Metghalchi, Rate-controlled constrained-equilibrium theory applied to the expansion of combustion products in the power stroke of an internal combustion engine, Int. J. Thermodynamics 12(1) (2009), pp. 44–50.
  • M. Janbozorgi, S. Ugarte, H. Metghalchi, J.C. Keck, Combustion modeling of mono-carbon fuels using the rate-controlled constrained-equilibrium method, Combust. Flame 156(10) (2009), pp. 1871–1885.
  • G.P. Beretta, J.C. Keck, M. Janbozorgi, H. Metghalchi, The rate-controlled constrained-equilibrium approach to far-from-local-equilibrium thermodynamics, Entropy 14(2) (2012), pp. 92–130.
  • Z. Ren, G.M. Goldin, V. Hiremath, S.B. Pope, Reduced description of reactive flows with tabulation of chemistry, Combust. Theory Model. 15(6) (2011), pp. 827–848.
  • Z. Ren, G.M. Goldin, V. Hiremath, S.B. Pope, Simulations of a turbulent non-premixed flame using combined dimension reduction and tabulation for combustion chemistry, Fuel 105 (2013), pp. 636–644.
  • V. Hiremath, Z. Ren, S.B. Pope, A greedy algorithm for species selection in dimension reduction of combustion chemistry, Combust. Theory Model. 14(5) (2010), pp. 619–652.
  • V. Hiremath, Z. Ren, S.B. Pope, Combined dimension reduction and tabulation strategy using ISAT–RCCE–GALI for the efficient implementation of combustion chemistry, Combust. Flame 158(11) (2011), pp. 2113–2127.
  • E. Chiavazzo, A.N. Gorban, I.V. Karlin, Comparison of invariant manifolds for model reduction in chemical kinetics, Comm. Comput. Phys. 2(5) (2007), pp. 964–992.
  • J. Kim, S.B. Pope, Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation probability density function method, Combust. Theory Model. 18(3) (2014), pp. 388–413.
  • G. Nicolas, M. Janbozorgi, H. Metghalchi, Constrained-equilibrium modeling of methane oxidation in air, ASME J. Energy Res. Technol. 136(3) (2014), p. 032205.
  • S. Elbahloul, S. Rigopoulos, Rate-controlled constrained equilibrium (RCCE) simulations of turbulent partially premixed flames (Sandia D/E/F) and comparison with detailed chemistry, Combust. Flame 162(5) (2015), pp. 2256–2271.
  • S. Lapointe, B. Bobbit, G. Blanquart, Impact of chemistry models on flame-vortex interaction, Proc. Combust. Inst. 35 (2015), pp. 1033–1040.
  • F. Hadi, M. Reza, H. Sheikhi, A comparison of constraint and constraint potential forms of the rate-controlled constraint-equilibrium method, ASME J. Energy Res. Technol. 138 (2016), p. 022202.
  • A.N. Al-Khateeb, J.M. Powers, S. Paolucci, A.J. Sommese, J.A. Diller, J.D. Hauenstein, J.D. Mengers, One-dimensional slow invariant manifolds for spatially homogenous reactive systems, J. Chem. Phys. 131(2) (2009), p. 024118.
  • E. Chiavazzo, I.V. Karlin, C.E. Frouzakis, K. Boulouchos, Method of invariant grid for model reduction of hydrogen combustion, Proc. Combust. Inst. 32 (2009), pp. 519–526.
  • M. Janbozorgi, H. Metghalchi, Rate-controlled constrained-equilibrium modeling of H/O reacting nozzle flow, J. Propul. Power 28(4) (2012), pp. 677–684.
  • G.P. Beretta, M. Janbozorgi, H. Metghalchi, Degree of disequilibrium analysis for automatic selection of kinetic constraints in the rate-controlled constrained-equilibrium method, Combust. Flame 168(2016), pp. 342–364.
  • S. Gordon, B.J. McBride, Computer program for calculations of complex chemical equilibrium compositions, rocket performances, incident and reflected shocks, and Chapman–Jouguet detonations, NASA, Tech. SP-273, 1971.
  • W.C. Reynolds, The element potential method for chemical equilibrium analysis: Implementation in the interactive program STANJAN, Stanford University, Dept. of Mechanical Engr., 1986.
  • S.B. Pope, Gibbs function continuation for the stable computation of chemical equilibrium, Combust. Flame 139(3) (2004), pp. 222–226.
  • S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combut. Theory Model. 1 (1997), pp. 41–63.
  • L. Lu, S.B. Pope, An improved algorithm for in situ adaptive tabulation, J. Comput. Phys. 228 (2009) 361–386.
  • L. Lu, S.R. Lantz, Z. Ren, S.B. Pope, Computationally efficient implementation of combustion chemistry in parallel PDF calculations, J. Comput. Phys. 228 (2009) 5490–5525.
  • V. Hiremath, S.B. Pope, A study of the rate-controlled constrained-equilibrium dimension reduction method and its different implementations, Combust. Theory Model. 17(2) (2013), pp. 260–293.
  • Z. Ren, S.B. Pope, Transport-chemistry coupling in the reduced description of reactive flows, Combust. Theory Model. 11(5) (2007), pp. 715–739.
  • Z. Ren, S.B. Pope, The use of slow manifolds in reactive flows, Combust. Flame 147 (2006) 243–261.
  • S.H. Lam, Model reductions with special CSP data, Combust. Flame 160 (12) (2013), pp. 2707–2711.
  • Y. Gao, Y. Liu, Z. Ren, T. Lu, A dynamic adaptive method for hybrid integration of stiff chemistry, Combust. Flame 162(2) (2015), pp. 287–295.
  • M. Frenklach, H. Wang, C.-L. Yu, M. Goldenberg, C. Bowman, R. Hanson, D. Davidson, E. Chang, G. Smith, D. Golden, W. Gardiner, V. Lissianski, GRI-Mech; available at http://www.me.berkeley.edu/gri_mech/
  • M. Caracotsios, W.E. Stewart, Sensitivity analysis of initial value problems with mixed ODEs and algebraic equations, Computers & Chemical Engineering 9 (1985), pp. 359–365.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.