459
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Large-eddy simulation of a bluff-body stabilised turbulent premixed flame using the transported flame surface density approach

&
Pages 722-748 | Received 06 May 2016, Accepted 25 Jan 2017, Published online: 08 Mar 2017

References

  • H. Pitsch, Large-eddy simulation of turbulent combustion, Annu. Rev. Fluid Mech. 38 (2006), pp. 453–482.
  • E.R. Hawkes and R.S. Cant, A flame surface density approach to LES of premixed turbulent combustion, Proc. Combust. Inst. 28 (2000), pp. 51–58.
  • E.R. Hawkes and R.S. Cant, Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion, Combust. Flame 126 (2001), pp. 1617–1629.
  • F. Charlette, A. Trouvé, M. Boger, and D. Veynante, A power-law flame wrinkling model for LES of premixed turbulent combustion – Part I: Non-dynamic formulation and initial tests, Combust. Flame 131 (2002), pp. 159–180.
  • H.G. Weller, G. Tabor, A.D. Gosman, and C. Fureby, Application of a flame-wrinkling LES combustion model to a turbulent mixing layer, Symp. (Int.) Combust. 27 (1998), pp. 899–907.
  • W.-W. Kim and S. Menon, Numerical modeling of turbulent premixed flames in the thin-reaction-zones regime, Combust. Sci. Technol. 160 (2000), pp. 119–150.
  • H. Pitsch and L. Duchamp de Lageneste, Large-eddy simulation of premixed turbulent combustion using a level-set approach, Proc. Combust. Inst. 29 (2002), pp. 2001–2008.
  • P. Domingo, L. Vervisch, S. Payet, and R. Hauguel, DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry, Combust. Flame 143 (2005), pp. 566–586.
  • O. Colin, F. Ducros, D. Veynante, and T.J. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12 (2000), pp. 1843–1863.
  • M. Boger, D. Veynante, H. Boughanem, and A. Trouvé, Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion, Symp. (Int.) Combust. 27 (1998), pp. 917–925.
  • S.S. Ibrahim, S.R. Gubba, A.R. Masri, and W. Malalasekera, Calculations of explosion deflagrating flames using a dynamic flame surface density model, J. Loss Prevent. Proc. Ind. 22(3) (2009), pp. 258–264.
  • G. Wang, M. Boileau, and D. Veynante, Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion, Combust. Flame 158 (2011), pp. 2199–2213.
  • T. Schmitt, A. Sadiki, B. Fiorina, and D. Veynante, Impact of dynamic wrinkling model on the prediction accuracy using the F-TACLES combustion model in swirling premixed turbulent flames, Proc. Combust. Inst. 34 (2013), pp. 1261–1268.
  • A. Hosseinzadeh, A. Sadiki, and J. Janicka, Assessment of the dynamic SGS wrinkling combustion modeling using the thickened flame approach coupled with FGM tabulated detailed chemistry, Flow Turbul. Combust. 96 (2016), pp. 939–964.
  • S.B. Pope, The evolution of surfaces in turbulence, Int. J. Engng Sci. 26 (1988), pp. 445–469.
  • S.M. Candel and T.J. Poinsot, Flame stretch and the balance equation for the flame area, Combust. Sci. Technol. 70 (1990), pp. 1–15.
  • N. Chakraborty and R.S. Cant, Direct numerical simulation analysis of the flame surface density transport equation in the context of large eddy simulation, Proc. Combust. Inst. 32 (2009), pp. 1445–1453.
  • N. Chakraborty and R.S. Cant, Influence of Lewis number on strain rate effects in turbulent premixed flame propagation, Int. J. Heat Mass Trans. 49 (2006), pp. 2158–2172.
  • N. Chakraborty, M. Klein, and R.S. Cant, Effects of turbulent Reynolds number on the displacement speed statistics in the thin reaction zones regime of turbulent premixed combustion, J. Combust. 2011 (2011), pp. 1–19.
  • N. Chakraborty and R.S. Cant, A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation, Phys. Fluids 19 (2007), pp. 1–22.
  • N. Shahbazian, C.P.T. Groth, and Ö.L. Gülder, Comparative study of algebraic and transported FSD models for LES of premixed flames in flamelet and thin reaction zones regimes, 51st AIAA Aerospace Sciences Meeting, January 2013, Grapevine, TX, AIAA 2013–1138, pp. 1–13.
  • C. Fureby, A computational study of combustion instabilities due to vortex shedding, Proc. Combust. Inst. 28 (2000), pp. 783–791.
  • G. Lecocq, S. Richard, O. Colin, and L. Vervisch, Gradient and counter-gradient modeling in premixed flames: Theoretical study and application to the LES of a lean premixed turbulent swirl-burner, Combust. Sci. Technol. 182 (2010), pp. 465–479.
  • T. Ma, O. T. Stein, N. Chakraborty, and A.M. Kempf, A posteriori testing of the flame surface density transport equation for LES, Combust. Theory Model. 18 (2014), pp. 32–64.
  • F.E. Hernández-Pérez, F.T.C. Yuen, C.P.T. Groth, and Ö.L. Gülder, LES of a laboratory-scale turbulent premixed Bunsen flame using FSD, PCM-FPI and thickened flame models, Proc. Combust. Inst. 33 (2011), pp. 1365–1371.
  • S. Richard, O. Colin, O. Vermorel, A. Benkenida, C. Angelberger, and D. Veynante, Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31 (2007), pp. 3059–3066.
  • A. Sjunnesson, S. Olovsson, and S. Sjöblom, Validation rig – A tool for flame studies, 10th Conference of the International Society of Airbreathing Engines (ISABE), Nottingham, UK, 1991.
  • A. Sjunnesson, A. Olovsson, and E. Max, Measurements of velocities and turbulence in a bluff body stabilized flame, Fourth ASME International Conference on Laser Anemometry – Advances and Applications, Cleveland, OH, 1991.
  • A. Sjunnesson, P. Henrikson, and C. Lofstrom, CARS measurement and visualization of reacting flow in a bluff body stabilized flame, 28th Joint AIAA/SAE/ASME/ASEE Propulsion Conference and Exhibit, Nashville, TN, 1992.
  • S.J. Shanbhogue, S. Husain, and T. Lieuwen, Lean blowoff of bluff body stabilized flames: Scaling and dynamics, Prog. Energy Combust. Sci. 35 (2009), pp. 98–120.
  • R.R. Erickson and M.C. Soteriou, The influence of reactant temperature on the dynamics of bluff body stabilized premixed flames, Combust. Flame 158 (2011), pp. 2441–2457.
  • C.Y. Lee, L.K.B. Li, M.P. Juniper, and R.S. Cant, Nonlinear hydrodynamic and thermoacoustic oscillations of a bluff-body stabilised turbulent premixed flame, Combust. Theory Model. 20 (2016), pp. 1–23.
  • P. Nilsson and X.S. Bai, Effects of flame stretch and wrinkling on co formation in turbulent premixed combustion, Proc. Combust. Inst. 29 (2002), pp. 1873–1879.
  • E. Giacomazzi, V. Battaglia, and C. Bruno, The coupling of turbulence and chemistry in a premixed bluff-body flame as studied by LES, Combust. Flame 138 (2004), pp. 320–335.
  • I. Porumbel and S. Menon, Large eddy simulation of bluff body stabilized premixed flame, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 9–12 January 2006.
  • B. Manickam, J. Franke, S.P.R. Muppala, and F. Dinkelacker, Large-eddy simulation of triangular-stabilized lean premixed turbulent flames: Quality and error assessment, Flow Turbul. Combust. 88 (2012), pp. 563–596.
  • W.P. Jones, A.J. Marquis, and F. Wang, Large eddy simulation of a premixed propane turbulent bluff body flame using the Eulerian stochastic field method, Fuel 140 (2015), pp. 514–525.
  • P.A.T. Cocks, M.C. Soteriou, and V. Sankaran, Impact of numerics on the predictive capabilities of reacting flow LES, Combust. Flame 162 (2015), pp. 3394–3411.
  • A.M. Briones, B. Sekar, and H. Thornburg, Characteristics of bluff body stabilized turbulent premixed flames, ASME Turbo Expo, Vancouver, Canada, 6–10 June 2011.
  • C. Fureby, Large eddy simulation of combustion instabilities in a jet engine afterburner model, Combust. Sci. Technol. 161 (2000), pp. 213–243.
  • A. Ghani, T. Poinsot, L. Gicquel, and G. Staffelbach, LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame, Combust. Flame 162 (2015), pp. 4075–4083.
  • H.-G. Li, P. Khare, H.-G. Sung, and V. Yang, A large eddy simulation study of combustion dynamics of bluff-body stabilized flames, Combust. Sci. Technol. 188 (2016), pp. 924–952.
  • R.D. Smagorinsky, General circulation experiment with the primitive equations, Mon. Weather Rev. 91 (1963), pp. 99–164.
  • B.J. Daly and H.H. Francis, Transport equations in turbulence, Phys. Fluids 13 (1970), pp. 2634–2649.
  • E.R. Hawkes and R.S. Cant, Physical and numerical realizability requirements for flame surface density approaches, Proc. Combust. Inst. 5 (2001), pp. 699–720.
  • J. Duclos, D.P. Veynante, and T.J. Poinsot, A comparison of flamelet models for premixed turbulent combustion, Combust. Flame 95 (1993), pp. 101–117.
  • C. Meneveau and T.J. Poinsot, Stretching and quenching of flamelets in premixed turbulent combustion, Combust. Flame 86 (1991), pp. 311–332.
  • C. Angelberger, D. Veynante, F. Egolfopoulos, and T.J. Poinsot, Large eddy simulations of combustion instabilities in premixed flames, Research Proceedings of the Summer Program, Center for Turbulence Research, Stanford, CA, 1998.
  • H.G. Weller, G.R. Tabor, H. Jasak, and C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys. 12 (1998), pp. 620–631.
  • C.M. Rhie and W.L. Chow, Numerical study of the turbulent flow past an airfoil with trailing edge separation, AIAA J. 21 (1983), pp. 1525–1532.
  • R.I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys. 62 (1985), pp. 40–65.
  • N. Kornev and E. Hassel, Method of random spots for generation of synthetic inhomogeneous turbulent fields with prescribed autocorrelation functions, Commun. Numer. Meth. Engng 23 (2007), pp. 35–43.
  • T.J. Poinsot and S.K. Lele, Boundary conditions for direct simulations of compressible viscous flows, J. Comp. Phys. 101 (1992), pp. 104–129.
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion. R.T. Edwards, Reston, VA, 2005.
  • J.C.R. Hunt, A.A. Wray, and P. Moin, Eddies, streams, and convergence zones in turbulent flows, Proceedings of the Summer Programme, Center for Turbulence Research, Stanford, CA, 1988.
  • R.W. Metcalfe, S.A. Orszag, M.E. Brachet, S. Menon, and J.J. Riley, Secondary instability of a temporally growing mixing layer, J. Fluid Mech. 184 (2006), pp. 207–243.
  • I.B. Celik, Z.N. Cehreli, and I. Yavuz, Index of resolution quality for large eddy simulations, J. Fluids Engng 127 (2005), pp. 949–958.
  • S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys. 6 (2004), Paper No. 35.
  • S. Shanbhogue, D.-H. Shin, S. Hemchandra, D. Plaks, and T. Lieuwen, Flame sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing, Proc. Combust. Inst. 32 (2009), pp. 1787–1794.
  • D.-H. Shin and T. Lieuwen, Flame wrinkle destruction processes in harmonically forced, turbulent premixed flames, J. Fluid Mech. 721 (2013), pp. 484–513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.