421
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A computational study of soot formation and flame structure of coflow laminar methane/air diffusion flames under microgravity and normal gravity

ORCID Icon &
Pages 864-878 | Received 25 Aug 2016, Accepted 05 Mar 2017, Published online: 10 Apr 2017

References

  • G. Legros and J.L. Torero. Phenomenological model of soot production inside a non-buoyant laminar diffusion flame. Proc. Combust. Inst. 35 (2015), pp. 2545–53. doi:10.1016/j.proci.2014.05.038.
  • G. Legros, A. Fuentes, S. Rouvreau, P. Joulain, B. Porterie and J.L. Torero. Transport mechanisms controlling soot production inside a non-buoyant laminar diffusion flame. Proc. Combust. Inst. 32 (2009), pp. 2461–70. doi:10.1016/j.proci.2008.06.179.
  • J.C. Ku, D.W. Griffin, P.S. Greenberg and J. Roma. Buoyancy-induced differences in soot morphology. Combust. Flame. 102 (1995), pp. 216–8. doi:10.1016/0010-2180(95)00108-I.
  • P.S. Greenberg and J.C. Ku. Soot volume fraction maps for normal and reduced gravity laminar acetylene jet diffusion flames. Combust. Flame. 108 (1997), pp. 227–30. doi:10.1016/S0010-2180(96)00205-2.
  • C.M. Megaridis, D.W. Griffin and B. Konsur. Soot-field structure in laminar soot-emitting microgravity nonpremixed flames. Symp. Combust. 26 (1996), pp. 1291–9. doi:10.1016/S0082-0784(96)80347-X.
  • B. Konsur, C.M. Megaridis and D.W. Griffin. Soot aerosol properties in laminar soot-emitting microgravity nonpremixed flames. Combust. Flame. 118 (1999), pp. 509–20. doi:10.1016/S0010-2180(99)00021-8.
  • K.T. Walsh, J. Fielding, M.D. Smooke and M.B. Long. Experimental and computational study of temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames. Proc. Combust. Inst. 28 (2000), pp. 1973–9. doi:10.1016/S0082-0784(00)80603-7.
  • B.-H. Jeon and J.H. Choi. Effect of buoyancy on soot formation in gas-jet diffusion flame. J. Mech. Sci. Technol. 24 (2010), pp. 1537–43. doi:10.1007/s12206-010-0406-4.
  • J. Reimann and S. Will. Optical diagnostics on sooting laminar diffusion flames in microgravity. Microgravity-Sci. Technol. 16 (2005), pp. 333–7. doi:10.1007/BF02946001.
  • J. Reimann, S.-A. Kuhlmann and S. Will. Investigations on soot formation in heptane jet diffusion flames by optical techniques. Microgravity Sci. Technol. 22 (2010), pp. 499–505. doi:10.1007/s12217-010-9204-y.
  • F.J. Diez, C. Aalburg, P.B. Sunderland, D.L. Urban, Z.-G. Yuan and G.M. Faeth. Soot properties of laminar jet diffusion flames in microgravity. Combust. Flame. 156 (2009), pp. 1514–24. doi:10.1016/j.combustflame.2009.04.006.
  • C.R. Kaplan, E.S. Oran, K. Kailasanath and H.D. Ross. Gravitational effects on sooting diffusion flames. Symp. Combust. 26 (1996), pp. 1301–9. doi:10.1016/S0082-0784(96)80348-1.
  • W. Kong and F. Liu. Effects of gravity on soot formation in a coflow laminar methane/air diffusion flame. Microgravity Sci. Technol. 22 (2009), pp. 205–14. doi:10.1007/s12217-009-9175-z.
  • W. Kong and F. Liu. Numerical study of the effects of gravity on soot formation in laminar coflow methane/air diffusion flames under different air stream velocities. Combust. Theory. Model. 13 (2009), pp. 993–1023. doi:10.1080/13647830903342527.
  • F. Liu, G.J. Smallwood and W. Kong. The importance of thermal radiation transfer in laminar diffusion flames at normal and microgravity. J. Quant. Spectrosc. Radiat. Transf. 112 (2011), pp. 1241–9. doi:10.1016/j.jqsrt.2010.08.021.
  • M.R.J. Charest, C.P.T. Groth and Ö.L. Gülder. A numerical study on the effects of pressure and gravity in laminar ethylene diffusion flames. Combust. Flame. 158 (2011), pp. 1933–45. doi:10.1016/j.combustflame.2011.02.022.
  • M.R.J. Charest, C.P.T. Groth and G. ÖL. Effects of gravity and pressure on laminar coflow methane–air diffusion flames at pressures from 1 to 60 atmospheres. Combust. Flame. 158 (2011), pp. 860–75. doi:10.1016/j.combustflame.2011.01.019.
  • B. Ma, S. Cao, D. Giassi, D.P. Stocker, F. Takahashi, V. Bennett BAet al., An experimental and computational study of soot formation in a coflow jet flame under microgravity and normal gravity. Proc. Combust. Inst. 35 (2015), pp. 839–46. doi:10.1016/j.proci.2014.05.064.
  • V. Chernov, Q. Zhang, M.J. Thomson and S.B. Dworkin. Numerical investigation of soot formation mechanisms in partially-premixed ethylene–air co-flow flames. Combust. Flame. 159 (2012), pp. 2789–98. doi:10.1016/j.combustflame.2012.02.023.
  • Q. Zhang, H. Guo, F. Liu, G.J. Smallwood and M.J. Thomson. Modeling of soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame with detailed PAH chemistry and an advanced sectional aerosol dynamics model. Proc. Combust. Inst. 32 (2009), pp. 761–8. doi:10.1016/j.proci.2008.06.109.
  • A. Veshkini, S.B. Dworkin and M.J. Thomson. A soot particle surface reactivity model applied to a wide range of laminar ethylene/air flames. Combust. Flame. 161 (2014), pp. 3191–200. doi:10.1016/j.combustflame.2014.05.024.
  • Q. Zhang, M.J. Thomson, H. Guo, F. Liu and G.J. Smallwood. A numerical study of soot aggregate formation in a laminar coflow diffusion flame. Combust. Flame. 156 (2009), pp. 697–705. doi:10.1016/j.combustflame.2008.10.022.
  • S.B. Dworkin, Q. Zhang, M.J. Thomson, N.A. Slavinskaya and U. Riedel. Application of an enhanced PAH growth model to soot formation in a laminar coflow ethylene/air diffusion flame. Combust. Flame. 158 (2011), pp. 1682–95. doi:10.1016/j.combustflame.2011.01.013.
  • Q. Zhang, M.J. Thomson, H. Guo, F. Liu and G.J. Smallwood. Modeling of oxidation-driven soot aggregate fragmentation in a laminar coflow diffusion flame. Combust. Sci. Technol. 182 (2010), pp. 491–504. doi:10.1080/00102200903463050.
  • V. Chernov, M.J. Thomson, S.B. Dworkin, N.A. Slavinskaya and U. Riedel. Soot formation with C1 and C2 fuels using an improved chemical mechanism for PAH growth. Combust. Flame. 161 (2014), pp. 592–601. doi:10.1016/j.combustflame.2013.09.017.
  • N.A. Eaves, M.J. Thomson and S.B. Dworkin. The Effect of conjugate heat transfer on soot formation modeling at elevated pressures. Combust. Sci. Technol. 185 (2013), pp. 1799–819. doi:10.1080/00102202.2013.839554.
  • H. Bockhorn (ed.), Soot Formation in Combustion vol. 59, Springer, Berlin, Heidelberg, Berlin Heidelberg, 1994. doi:10.1007/978-3-642-85167-4.
  • B.S. Haynes and H.G. Wagner. Soot formation. Prog. Energy. Combust. Sci. 7 (1981), pp. 229–73. doi:10.1016/0360-1285(81)90001-0.
  • N.A. Eaves, Q. Zhang, F. Liu, H. Guo, S.B. Dworkin and M.J. Thomson. CoFlame: A refined and validated numerical algorithm for modeling sooting laminar coflow diffusion flames. Comput. Phys. Commun. 207 (2016), pp. 464–477. doi:10.1016/j.cpc.2016.06.016.
  • S. Cao, B. Ma, B.A.V. Bennett, D. Giassi, D.P. Stocker, F. Takahashi, et al. A computational and experimental study of coflow laminar methane/air diffusion flames: Effects of fuel dilution, inlet velocity, and gravity. Proc. Combust. Inst. 35 (2015), pp. 897–903. doi:10.1016/j.proci.2014.05.138.
  • H. Wang. Formation of nascent soot and other condensed-phase materials in flames. Proc. Combust. Inst. 33 (2011), pp. 41–67. doi:10.1016/j.proci.2010.09.009.
  • A. Veshkini, N.A. Eaves, S.B. Dworkin and M.J. Thomson. Application of PAH-condensation reversibility in modeling soot growth in laminar premixed and nonpremixed flames. Combust. Flame. 167 (2016), pp. 335–52. doi:10.1016/j.combustflame.2016.02.024.
  • M. Saffaripour, A. Veshkini, M. Kholghy and M.J. Thomson. Experimental investigation and detailed modeling of soot aggregate formation and size distribution in laminar coflow diffusion flames of Jet A-1, a synthetic kerosene, and n-decane. Combust. Flame. 161 (2014), pp. 848–63. doi:10.1016/j.combustflame.2013.10.016.
  • J. Appel, H. Bockhorn and M. Frenklach. Kinetic modeling of soot formation with detailed chemistry and physics: laminar premixed flames of C2 hydrocarbons. Combust. Flame. 121 (2000), pp. 122–36. doi:10.1016/S0010-2180(99)00135-2.
  • M. Frenklach and H. Wang. Detailed modeling of soot particle nucleation and growth. Symp. Combust. 23 (1991), pp. 1559–66. doi:10.1016/S0082-0784(06)80426-1.
  • N.A. Eaves, A. Veshkini, C. Riese, Q. Zhang, S.B. Dworkin and M.J. Thomson. A numerical study of high pressure, laminar, sooting, ethane–air coflow diffusion flames. Combust. Flame. 159 (2012), pp. 3179–90. doi:10.1016/j.combustflame.2012.03.017.
  • J. Appel, H. Bockhorn and M. Wulkow. A detailed numerical study of the evolution of soot particle size distributions in laminar premixed flames. Chemosphere. 42 (2001), pp. 635–45. doi:10.1016/S0045-6535(00)00237-X.
  • G. Legros, Q. Wang, J. Bonnety, M. Kashif, C. Morin, J.-L. Consalvi, et al. Simultaneous soot temperature and volume fraction measurements in axis-symmetric flames by a two-dimensional modulated absorption/emission technique. Combust. Flame. 162 (2015), pp. 2705–19. doi:10.1016/j.combustflame.2015.04.006.
  • V. Giovangigli. Multicomponent transport in laminar flames. Proc. Combust. Inst. 35 (2015), pp. 625–37. doi:10.1016/j.proci.2014.08.011.
  • S.B. Dworkin, M.D. Smooke and V. Giovangigli. The impact of detailed multicomponent transport and thermal diffusion effects on soot formation in ethylene/air flames. Proc. Combust. Inst. 32 (2009), pp. 1165–72. doi:10.1016/j.proci.2008.05.061.
  • N.A. Eaves, A. Veshkini, C. Riese, Q. Zhang, S.B. Dworkin and M.J. Thomson. A numerical study of high pressure, laminar, sooting, ethane-air coflow diffusion flames. Combust. Flame. 159 (2012), pp. 3179–3190. doi:10.1016/j.combustflame.2012.03.017.
  • M.R. Kholghy, A. Veshkini and M.J. Thomson. The coreshell internal nanostructure of soot A criterion to model soot maturity. Carbon, 100 (2016), pp. 508–536. doi:doi:10.1016/j.carbon.2016.01.022.
  • M.D. Smooke, M.B. Long, B.C. Connelly, M.B. Colket and R.J. Hall. Soot formation in laminar diffusion flames. Combust. Flame. 143 (2005), pp. 613–28. doi:10.1016/j.combustflame.2005.08.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.