511
Views
19
CrossRef citations to date
0
Altmetric
Original Articles

Combustion kinetic model development using surrogate model similarity method

, & ORCID Icon
Pages 777-794 | Received 15 Jul 2017, Accepted 07 Mar 2018, Published online: 09 Apr 2018

References

  • H. Wang and D.A. Sheen , Combustion kinetic model uncertainty quantification, propagation and minimization , Prog. Energy Combust. Sci. 47 (2015), pp. 1–31.
  • A.S. Tomlin , The role of sensitivity and uncertainty analysis in combustion modelling , Proc. Combust. Inst. 34 (2013), pp. 159–176.
  • M. Frenklach , Systematic optimization of a detailed kinetic model using a methane ignition example , Combust. Flame 58 (1984), pp. 69–72.
  • D.A. Sheen , X. You , H. Wang , and T. Løvås , Spectral uncertainty quantification, propagation and optimization of a detailed kinetic model for ethylene combustion , Proc. Combust. Inst. 32 (2009), pp. 535–542.
  • M. Frenklach , H. Wang , and M.J. Rabinowitz , Optimization and analysis of large chemical kinetic mechanisms using the solution mapping method—combustion of methane , Prog. Energy Combust. Sci. 18 (1992), pp. 47–73.
  • R. Feeley , P. Seiler , A. Packard , and M. Frenklach , Consistency of a Reaction Dataset , J. Phys. Chem. A, 108, 44 (2004), pp. 9573–9583.
  • R. Feeley , M. Frenklach , M. Onsum , T. Russi , A. Arkin , and A. Packard , Model discrimination using data collaboration , J. Phys. Chem. A, 110, 21 (2006), pp. 6803–6813.
  • G.P. Smith , D.M. Golden , M. Frenklach , N.W. Moriarty , B. Eitenee , M. Goldenberg , C.T. Bowman , R.K. Hanson , S. Song , W.C. Gardiner , V.V.L. Jr., and Z. Qin , GRI- mech . http://www.me.berkeley.edu/gri_mech/ .
  • L. Tierney , Markov chains for exploring posterior distributions , Ann. Stat. 22(4) (1994), pp. 1701–1728.
  • H.N. Najm , B.J. Debusschere , Y.M. Marzouk , S. Widmer , and O. Le Maître , Uncertainty quantification in chemical systems , Int. J. Numer. Methods Eng. 80 (2009), pp. 789–814.
  • K. Miki , S.H. Cheung , E.E. Prudencio , and P.L. Varghese , Bayesian uncertainty quantification of recent shock tube determinations of the rate coefficient of reaction H + O2→OH + O , Int. J. Chem. Kinet. 44 (2012), pp. 586–597.
  • M. Panesi , K. Miki , S. Prudhomme , and A. Brandis , On the assessment of a Bayesian validation methodology for data reduction models relevant to shock tube experiments , Comput. Methods Appl. Mech. Eng. 213-216 (2012), pp. 383–398.
  • K. Braman , T.A. Oliver , and V. Raman , Bayesian analysis of syngas chemistry models , Combust. Theor. Model. 17 (2013), pp. 858–887.
  • D.A. Sheen and H. Wang , The method of uncertainty quantification and minimization using polynomial chaos expansions , Combust. Flame 158 (2011), pp. 2358–2374.
  • D.A. Sheen and H. Wang , Combustion kinetic modeling using multispecies time histories in shock-tube oxidation of heptane , Combust. Flame 158 (2011), pp. 645–656.
  • D.A. Sheen , C.M. Rosado-Reyes , and W. Tsang , Kinetics of H atom attack on unsaturated hydrocarbons using spectral uncertainty propagation and minimization techniques , Proc. Combust. Inst. 34 (2013), pp. 527–536.
  • Y. Xin , D.A. Sheen , H. Wang , and C.K. Law , Skeletal reaction model generation, uncertainty quantification and minimization: Combustion of butane , Combust. Flame 161 (2014), pp. 3031–3039.
  • T. Turányi , T. Nagy , I.G. Zsély , M. Cserháti , T. Varga , B.T. Szabó , I. Sedyó , P.T. Kiss , A. Zempléni , and H.J. Curran , Determination of rate parameters based on both direct and indirect measurements , Int. J. Chem. Kinet. 44 (2012), pp. 284–302.
  • T. Varga , T. Nagy , C. Olm , I.G. Zsély , R. Pálvölgyi , É. Valkó , G. Vincze , M. Cserháti , H.J. Curran , and T. Turányi , Optimization of a hydrogen combustion mechanism using both direct and indirect measurements , Proc. Combust. Inst. 35 (2015), pp. 589–596.
  • C. Olm , T. Varga , É. Valkó , S. Hartl , C. Hasse , and T. Turányi , Development of an ethanol combustion mechanism based on a hierarchical optimization approach , Int. J. Chem. Kinet. 48 (2016), pp. 423–441.
  • V. Samu , T. Varga , K. Brezinsky , and T. Turányi , Investigation of ethane pyrolysis and oxidation at high pressures using global optimization based on shock tube data , Proc. Combust. Inst., 36(1) (2016, pp. 691–698).
  • N. Hansen , T.A. Cool , P.R. Westmoreland , and K. Kohse-Höinghaus , Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry , Prog. Energy Combust. Sci. 35 (2009), pp. 168–191.
  • A.I. Khuri and S. Mukhopadhyay , Response surface methodology , Wiley Interdiscip. Rev.: Comput. Stat. 2 (2010), pp. 128–149.
  • A. Forrester , A. Sobester , and A. Keane , Engineering Design via Surrogate Modelling: A Practical Guide , John Wiley & Sons, Hoboken, New Jersey, 2008.
  • T. Ziehn , K.J. Hughes , J.F. Griffiths , R. Porter , and A.S. Tomlin , A global sensitivity study of cyclohexane oxidation under low temperature fuel-rich conditions using HDMR methods , Combust. Theor. Model. 13 (2009), pp. 589–605.
  • T. Russi , A. Packard , R. Feeley , and M. Frenklach , Sensitivity analysis of uncertainty in model prediction , J. Phys. Chem. A 112 (2008), pp. 2579–88.
  • S.G. Davis , A.B. Mhadeshwar , D.G. Vlachos , and H. Wang , A new approach to response surface development for detailed gas-phase and surface reaction kinetic model optimization , Int. J. Chem. Kinet. 36 (2003), pp. 94–106.
  • G. Li , C. Rosenthal , and H. Rabitz , High dimensional model representation , J. Phys. Chem. A 105 (2001), pp. 7765–7777.
  • H. Rabitz , and Ö.F. Alıs , General foundations of high-dimensional model representations , J. Math. Chem. 25 (1999), pp. 197–223.
  • G. Li , S. Wang , H. Rabitz , S. Wang , and P. Jaffè , Global uncertainty assessments by high dimensional model representations (HDMR) , Chem. Eng. Sci. 57 (2002), pp. 4445–4460.
  • E.B. Dean , Correlation, Cost Risk, and Geometry , NASA Langley Technical Report Server, Hampton, 1992.
  • Ö. Alış and H. Rabitz , Efficient implementation of high dimensional model representations , J. Math. Chem. 29 (2001), pp. 127–142.
  • G. Li , S. Wang , and H. Rabitz , Practical approaches to construct RS-HDMR component functions , J. Phys. Chem. A 106 (2002), pp. 8721–8733.
  • S. Li , B. Yang , and F. Qi , Accelerate global sensitivity analysis using artificial neural network algorithm: Case studies for combustion kinetic model , Combust. Flame 168 (2016), pp. 53–64.
  • I. Basheer and M. Hajmeer , Artificial neural networks: Fundamentals, computing, design, and application , J. Microbiol. Methods 43 (2000), pp. 3–31.
  • I.y.M. Sobol' , On the distribution of points in a cube and the approximate evaluation of integrals , USSR Comp. Math & Math Phys. 7 (1967), pp. 784–802.
  • A.S. Tomlin , E. Agbro , V. Nevrlý , J. Dlabka , and M. Vašinek , Evaluation of combustion mechanisms using global uncertainty and sensitivity analyses: A case study for low-temperature dimethyl ether oxidation , Int. J. Chem. Kinet. 46 (2014), pp. 662–682.
  • H.V. Nguyen and B. Li , Cosine Similarity Metric Learning for Face Verification , Springer, Berlin Heidelberg, 2010.
  • J. Zádor , I.G. Zsély , and T. Turányi , Investigation of the correlation of sensitivity vectors of hydrogen combustion models , Int. J. Chem. Kinet. 36 (2004), pp. 238–252.
  • I.M. Sobol , Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , Math Comput. Simul. 55 (2001), pp. 271–280.
  • A.A. Konnov , Remaining uncertainties in the kinetic mechanism of hydrogen combustion , Combust. Flame 152 (2008), pp. 507–528.
  • J. Li , Z. Zhao , A. Kazakov , M. Chaos , F.L. Dryer , and J.J. Scire , A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion , Int. J. Chem. Kinet. 39 (2007), pp. 109–136.
  • S. Wang , D.F. Davidson , and R.K. Hanson , High temperature measurements for the rate constants of C1–C4 aldehydes with OH in a shock tube , Proc. Combust. Inst. 35 (2015), pp. 473–480.
  • U. Burke , W.K. Metcalfe , S.M. Burke , K.A. Heufer , P. Dagaut , and H.J. Curran , A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation , Combust. Flame 165 (2016), pp. 125–136.
  • R. Meana-Paneda , D.G. Truhlar , and A. Fernandez-Ramos , High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen , J. Chem. Phys. 134 (2011), pp. 094302.
  • S. Xu and M.C. Lin , Theoretical study on the kinetics for OH reactions with CH3OH and C2H5OH , Proc. Combust. Inst. 31 (2007), pp. 159–166.
  • L.T. Zaczek , K.Y. Lam , D.F. Davidson , and R.K. Hanson , A shock tube study of CH3OH+OH→Products using OH laser absorption , Proc. Combust. Inst. 35 (2015), pp. 377–384.
  • M. Altarawneh , A.A.H. Al‐Muhtaseb , B.Z. Dlugogorski , E.M. Kennedy , and J.C. Mackie , Rate constants for hydrogen abstraction reactions by the hydroperoxyl radical from methanol, ethenol, acetaldehyde, toluene, and phenol , J. Comput. Chem. 32 (2011), pp. 1725–1733.
  • W. Ren , E. Dames , D. Hyland , D.F. Davidson , and R.K. Hanson , Shock tube study of methanol, methyl formate pyrolysis: CH3OH and CO time-history measurements , Combust. Flame 160 (2013), pp. 2669–2679.
  • M. Altarawneh , A.H. Al-Muhtaseb , B.Z. Dlugogorski , E.M. Kennedy , and J.C. Mackie , Rate constants for hydrogen abstraction reactions by the hydroperoxyl radical from methanol, ethenol, acetaldehyde, toluene, and phenol , J. Comput. Chem. 32 (2011), pp. 1725–33.
  • S.J. Klippenstein , L.B. Harding , M.J. Davis , A.S. Tomlin , and R.T. Skodje , Uncertainty driven theoretical kinetics studies for CH3OH ignition: HO2+CH3OH and O2+CH3OH , Proc. Combust. Inst. 33 (2011), pp. 351–357.
  • Z. Hong , D.F. Davidson , K.-Y. Lam , and R.K. Hanson , A shock tube study of the rate constants of HO2 and CH3 reactions , Combust. Flame 159 (2012), pp. 3007–3013.
  • D. Baulch , C. Bowman , C. Cobos , R. Cox , T. Just , J. Kerr , M. Pilling , D. Stocker , J. Troe , and W. Tsang , Evaluated kinetic data for combustion modeling: Supplement II , J. Phys. Chem. Ref. Data 34 (2005), pp. 757–1397.
  • J. Prager , H.N. Najm , K. Sargsyan , C. Safta , and W.J. Pitz , Uncertainty quantification of reaction mechanisms accounting for correlations introduced by rate rules and fitted Arrhenius parameters , Combust. Flame 160 (2013), pp. 1583–1593.
  • David G. Goodwin , Harry K. Moffat , and Raymond L. Speth , Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes , (2017). Version 2.3.0. doi: 10.5281/zenodo.170284. http://www.cantera.org
  • J. Herzler and C. Naumann , Shock-tube study of the ignition of methane/ethane/hydrogen mixtures with hydrogen contents from 0% to 100% at different pressures , Proc. Combust. Inst. 32 (2009), pp. 213–220.
  • A. Kéromnès , W.K. Metcalfe , K.A. Heufer , N. Donohoe , A.K. Das , C.-J. Sung , J. Herzler , C. Naumann , P. Griebel , O. Mathieu , M.C. Krejci , E.L. Petersen , W.J. Pitz , and H.J. Curran , An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures , Combust. Flame 160 (2013), pp. 995–1011.
  • S. Li , T. Tao , J. Wang , B. Yang , C.K. Law , and F. Qi , Using sensitivity entropy in experimental design for uncertainty minimization of combustion kinetic models , Proc. Combust. Inst. 36 (2017), pp. 709–716.
  • J.D. Savee , S. Soorkia , O. Welz , T.M. Selby , C.A. Taatjes , and D.L. Osborn , Absolute photoionization cross-section of the propargyl radical a , J. Chem. Phys. 136 (2012), pp. 134307.
  • T.J. Held and F.L. Dryer , A comprehensive mechanism for methanol oxidation , Int. J. Chem. Kinet. 30 (1998), pp. 805–830.
  • T.J. Held and F.L. Dryer , An experimental and computational study of methanol oxidation in the intermediate-and high-temperature regimes , Proc. Combust. Inst. 25 (1994), pp. 901–908.
  • G. Dayma , K.H. Ali , and P. Dagaut , Experimental and detailed kinetic modeling study of the high pressure oxidation of methanol sensitized by nitric oxide and nitrogen dioxide , Proc. Combust. Inst. 31 (2007), pp. 411–418.
  • K. Chaloner and I. Verdinelli , Bayesian experimental design: A review , Stat. Sci. 10 (1995), pp. 273–304.
  • D.A. Sheen and J.A. Manion , Kinetics of the reactions of H and CH3 radicals with n-Butane: An experimental design study using reaction network analysis , J. Phys. Chem. A 118 (2014), pp. 4929–41.
  • M.T. Reagan , H.N. Najm , B.J. Debusschere , O.P.L. Maître , O.M. Knio , and R.G. Ghanem , Spectral stochastic uncertainty quantification in chemical systems , Combust. Theor. Model. 8 (2004), pp. 607–632.
  • H.N. Najm , Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics , Annu. Rev. Fluid Mech. 41 (2009), pp. 35–52.
  • H. Voorhees and T. Poggio , Computing texture boundaries from images , Nature 333 (1988), pp. 364–367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.