315
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Simulation-driven formulation of transportation fuel surrogates

ORCID Icon & ORCID Icon
Pages 883-897 | Received 07 Jul 2016, Accepted 01 Apr 2018, Published online: 30 May 2018

References

  • P. Dagaut , M. Reuillon , J.-C. Boettner , and M. Cathonnet , Kerosene combustion at pressures up to 40 atm: experimental study and detailed chemical kinetic modeling , Symp. (Int.) Combust. 25 (1) (1994), pp. 919–926.
  • R.P. Lindstedt and L.Q. Maurice , Detailed chemical-kinetic model for aviation fuels , J. Prop. Power. 16 (2000), pp. 187–195.
  • P. Dagaut , On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel , Phys. Chem. Chem. Phys. 4 (2002), pp. 2079–2094.
  • A. Violi , S. Yan , E. G. Eddings , A. F. Sarofim , S. Granata , T. Faravelli , and E. Ranzi , Experimental formulation and kinetic model for JP-8 surrogate mixtures , Combust. Sci. Technol. 174 (2002), pp. 399–417.
  • C. J. Montgomery , S. Cannon , M. Mawid , and B. Sekar , Reduced chemical kinetic mechanisms for JP-8 combustion , 40 th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA 2002-0336.
  • A. Agosta , N.P. Cernansky , D.L. Miller , T. Faravelli , and E. Ranzi , Reference components of jet fuels: kinetic modeling and experimental results , Exp. Thermal Fluid Sci. 28 (2004), pp. 701–708.
  • C. Doute , J.-L. Delfau , R. Akrich , and C. Vovelle , Chemical structure of atmospheric pressure premixed n-decane and kerosene flames , Combust. Sci. Technol. 105 (1995), pp. 327–344.
  • C. Guéret , Elaboration d’un mode‘le cine’ tique pour l’oxydation du ke rose‘ne et d’hydrocarbures repre’sentatifs, Ph.D. thesis, Universite’ d’Orléans (1989).
  • M. Colket , T. Edwards , S. Williams , N.P. Cernansky , D.L. Miller , F. Egolfopoulos , P. Lindstedt , K. Seshadri , F.L. Dryer , C.K. Law , D. Friend , D.B. Lenhert , H. Pitsch , A. Sarofim , M. Smooke , and W. Tsang , Development of an experimental database and kinetic models for surrogate jet fuels , in: 45 th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2007, pp. 2007–770.
  • E. Ranzi , A wide-range kinetic modeling study of oxidation and combustion of transportation fuels and surrogate mixtures , Energy Fuels 20 (2006), pp. 1024–1032.
  • P. Pepiot-Desjardins , Automatic strategies for chemical mechanism reduction , Ph.D. thesis, Stanford University, Department of Mechanical Engineering, 2008.
  • S. Dooley , S.H. Won , M. Chaos , J. Heyne , Y. Ju , F.L. Dryer , K. Kumar , C.J. Sung , H. Wang , M.A. Oehlschlaeger , R.J. Santoro , and T.A. Litzinger , A jet fuel surrogate formulated by real fuel properties , Combust. Flame 157 (2010), pp. 2333–2339.
  • S. Dooley , S.H. Won , J. Heyne , T.I. Farouk , Y. Ju , F.L. Dryer , K. Kumar , X. Hui , C.J. Sung , H. Wang , M.A. Oehlschlaeger , V. Iyer , S. Iyer , T.A. Litzinger , R.J. Santoro , T. Malewicki , and K. Brezinsky , The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena , Combust. Flame 159 (2012), pp. 1444–1466.
  • S. Dooley , S.H. Won , J. Heyne , T.I. Farouk , Y. Ju , F.L. Dryer , K. Kumar , X. Hui , C.-J. Sung , H. Wang , M.A. Oehlschlaeger , V. Iyer , S. Iyer , T.A. Litzinger , R.J. Santoro , T. Malewicki , and K. Brezinsky , The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena , Combust. Flame 159 (2012), pp. 1444–1466.
  • S.H. Won , S. Dooley , P.S. Veloo , H. Wang , M.A. Oehlschlaeger , F.L. Dryer , and Y. Ju , The combustion properties of 2, 6, 10-trimethyl dodecane and a chemical functional group analysis , Combust. Flame 161 (2014), pp. 826–834.
  • J. Yu , Y. Ju , and X. Gou , Surrogate fuel formulation for oxygenated and hydrocarbon fuels by using the molecular structures and functional groups , Fuel 166 (2016), pp. 211–218.
  • M. Mehl , J.-Y. Chen , W.J. Pitz , S. Sarathy , and C.K. Westbrook , An approach for formulating surrogates for gasoline with application toward a reduced surrogate mechanism for cfd engine modeling , Energy Fuels 25 (2011), pp. 5215–5223.
  • K. Narayanaswamy , H. Pitsch , and P. Pepiot , A component library framework for deriving kinetic mechanisms for multi-component fuel surrogates: Application for jet fuel surrogates , Combust. Flame 165 (2016), pp. 288–309.
  • P. Pepiot , R. Malhotra , A.R. Kirby , A.L. Boehman , and H. Pitsch , Experimental study and structural group analysis for soot reduction tendency of oxygenated fuels , Combust. Flame 154 (2008), pp. 191–205.
  • T. Edwards , Kerosene fuels for aerospace propulsion-composition and properties , 38 th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, IN, AIAA 2002-3874.
  • T. Edwards , Liquid fuels and propellants for aerospace propulsion: 1903–2003 , J Propuls. Power 19 (2003), pp. 1089–1107.
  • Y. Yang , A.L. Boehman , and R.J. Santoro , A study of jet fuel sooting tendency using the threshold sooting index (tsi) model , Combust. Flame 149 (1), (2007) pp. 191–205.
  • Defense Energy Support Centre , Petroleum quality information systems , Ann. Rep. Available at http://www.desc.dla.mil/DCM/Files/2004PQISreportsmall.pdf (2008).
  • Fuel user guide – average survey data, Tech. rep., US Army Tank-Automotive RD&E Center, Fuels and Lubricants Team, Warren, MI (2000).
  • M. Huber , E. Lemmon , and T. Bruno , Surrogate mixture models for the thermophysical properties of aviation fuel jet-a , Energy Fuels 24 (2010), pp. 3565–3571.
  • D.R. Olson , N.T. Meckel , and R. Quillian Jr , Combustion characteristics of compression ignition engine fuel components , Tech. rep., SAE Technical Paper (1960).
  • M.J. Murphy , J.D. Taylor , and R.L. McCormick , Compendium of experimental cetane number data , Tech. rep., National Renewable Energy Laboratory (NREL), Golden, CO. (2004).
  • A. Agosta , Development of a chemical surrogate for jp-8 aviation fuel using a pressurized flow reactor , Master's thesis, Drexel University (2002).
  • P. Ghosh and S.B. Jaffe , Detailed composition-based model for predicting the cetane number of diesel fuels , Ind. Engg. Chem. Res. 45 (1) (2006), pp. 346–351.
  • H. Wang and M.A. Oehlschlaeger , Autoignition studies of conventional and fischer-tropsch jet fuels , Fuel 98 (2012), pp. 249–258.
  • X. Hui , K. Kumar , C.-J. Sung , T. Edwards , and D. Gardner , Experimental studies on the combustion characteristics of alternative jet fuels , Fuel 98 (2012), pp. 176–182.
  • K. Narayanaswamy , G. Blanquart , and H. Pitsch , A consistent chemical mechanism for the oxidation of substituted aromatic species , Combust. Flame 157 (10) (2010), pp. 1879–1898.
  • K. Narayanaswamy , P. Pepiot , and H. Pitsch , A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates , Combust. Flame 161 (4) (2014), pp. 866–884.
  • K. Narayanaswamy , H. Pitsch , and P. Pepiot , A chemical mechanism for low to high temperature oxidation of methylcyclohexane as a component of transportation fuel surrogates , Combust. Flame 162 (2015), pp. 1193–1213.
  • H. Wang , E. Dames , B. Sirjean , D.A. Sheen , R. Tangko , A. Violi , J.Y.W. Lai , F.N. Egolfopoulos , D.F. Davidson , R.K. Hanson , C.T. Bowman , C.K. Law , W. Tsang , N.P. Cernansky , D.L. Miller , and R.P. Lindstedt , A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures , JetSurF version 2.0, Available at http://web.stanford.edu/group/haiwanglab/JetSurF/ (September 19 2010).
  • S.G. Johnson , The NLopt nonlinear-optimization package. Available at http://ab-initio.mit.edu/wiki/index.php/NLopt
  • H. Pitsch , M. Bollig , Flamemaster, a computer code for homogeneous and one-dimensional laminar flame calculations, Institut fur Technische Mechanik, RWTH Aachen.
  • S.G. Davis , A.B. Mhadeshwar , D.G. Vlachos , H. Wang , A new approach to response surface development for detailed gas-phase and surface reaction kinetic model optimization , Int. J Chem. Kinetics 36 (2004), pp. 94–106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.