355
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Turbulent scalar fluxes in H2-air premixed flames at low and high Karlovitz numbers

, , ORCID Icon, & ORCID Icon
Pages 1033-1048 | Received 21 Sep 2017, Accepted 14 Apr 2018, Published online: 26 Jun 2018

References

  • P. Clavin and F.A. Williams, Theory of premixed-flame propagation in large-scale turbulence, J. Fluid Mech. 90 (1979), pp. 589–604. doi: 10.1017/S002211207900241X
  • P.A. Libby and K.N.C. Bray, Countergradient diffusion in premixed turbulent flames, AIAA J. 19 (1981), pp. 205–213. doi: 10.2514/3.50941
  • K.N.C. Bray, P.A. Libby, and J.B. Moss, Unified modelling approach for premixed turbulent combustion Part I: General Formulation, Combust. Flame 61 (1985), pp. 87–102. doi: 10.1016/0010-2180(85)90075-6
  • J.B. Moss, Simultaneous measurements of concentration and velocity in an open premixed flame, Combust. Sci. Tech. 22 (1980), pp. 119–129. doi: 10.1080/00102208008952377
  • I.G. Shepherd, J.B. Moss, and K.N.C. Bray, Turbulent transport in a confined premixed flame, Proc. Combust. Inst. 19 (1982), pp. 423–431. doi: 10.1016/S0082-0784(82)80214-2
  • R.K. Cheng and I.G. Shepherd, Influence of burner geometry on premixed turbulent flame propagation, Combust. Flame 85 (1991), pp. 7–26. doi: 10.1016/0010-2180(91)90174-A
  • J.H. Frank, P.A.M. Kalt, and R.W. Bilger, Measurement of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV, Combust. Flame 116 (1999), pp. 220–232. doi: 10.1016/S0010-2180(98)00041-8
  • P.A.M. Kalt, Y.C. Chen, and R.W. Bilger, Experimental investigation of turbulent scalar flux in premixed stagnation-type flames, Combust. Flame 129 (2002), pp. 401–415. doi: 10.1016/S0010-2180(02)00354-1
  • S. Pfadler, F. Dinkelacker, F. Beyrau, and A. Leipertz, High resolution dual-plane stereo-PIV for validation of subgrid scale models in large-eddy simulations of turbulent premixed flames, Combust. Flame 156 (2009), pp. 1552–1564. doi: 10.1016/j.combustflame.2009.02.010
  • C.J. Rutland and R.S. Cant, Turbulent Transport in Premixed Flames. Proceedings of Summer Program, Centre for Turbulence Research, NASA Ames/ Stanford University, Stanford, CA, 1994.
  • D. Veynante, A. Trouve, K.N.C. Bray, and T. Mantel, Gradient and counter-gradient turbulent scalar transport in turbulent premixed flames, J. Fluid Mech. 332 (1997), pp. 263–293. doi: 10.1017/S0022112096004065
  • D. Veynante and T. Poinsot, Effects of pressure gradient in turbulent premixed flames, J. Fluid Mech. 353 (1997), pp. 83–114. doi: 10.1017/S0022112097007556
  • M. Boger, D. Veynante, H. Boughanem, and A. Trouve, A Direct Numerical simulation analysis of flame surface density concept for large Eddy simulation of turbulent premixed combustion, Proc. Combust. Inst. 27 (1998), pp. 917–925. doi: 10.1016/S0082-0784(98)80489-X
  • M. Boger, Sub-grid scale modeling for large eddy simulation of turbulent premixed combustion, PhD thesis, Ecole Centrale Paris, 2000.
  • N. Swaminathan, R.W. Bilger, and B. Cuenot, Relationship between turbulent scalar flux and conditional dilatation in premixed flames with complex chemistry, Combust. Flame 126 (2001), pp. 1764–1779. doi: 10.1016/S0010-2180(01)00283-8
  • S. Nishiki, T. Hasegawa, R. Borghi, and R. Himeno, Modelling of turbulent scalar flux in turbulent premixed flames based on DNS database, Combust. Theory Model. 10 (2006), pp. 39–55. doi: 10.1080/13647830500307477
  • S.W. Tullis and R.S. Cant, Scalar transport modeling in large eddy simulation of turbulent premixed flames, Proc. Combust. Inst. 29 (2002), pp. 2097–2104. doi: 10.1016/S1540-7489(02)80255-3
  • N. Chakraborty and R.S. Cant, Effects of Lewis number on scalar transport in turbulent premixed flames, Phys. Fluids 21 (2009), pp. 035110.
  • N. Chakraborty and R.S. Cant, Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames, Combust. Flame 156 (2009), pp. 1427–1444. doi: 10.1016/j.combustflame.2009.03.010
  • N. Chakraborty and R.S. Cant, Physical insight and modelling for Lewis number effects on turbulent heat and mass transport in turbulent premixed flames, Num. Heat Trans. 55 (2009), pp. 762–779. doi: 10.1080/10407780902864698
  • Y. Gao, N. Chakraborty, and M. Klein, Assessment of the performances of sub-grid scalar flux models for premixed flames with different global lewis numbers: a direct numerical simulation analysis, Int. J. Heat Fluid Flow 52 (2015), pp. 28–39. doi: 10.1016/j.ijheatfluidflow.2014.10.022
  • Y. Gao, M. Klein, and N. Chakraborty, Assessment of sub-grid scalar flux modeling in premixed flames for large eddy simulations: A-priori direct numerical simulation analysis, Eur. J. Mech.-B/Fluids 52 (2015), pp. 97–108. doi: 10.1016/j.euromechflu.2014.12.003
  • M. Klein, N. Chakraborty, and Y. Gao, Scale similarity based models and their application to subgrid scale scalar flux modelling in the context of turbulent premixed flames, Int. J. Heat Fluid Flow 57 (2016), pp. 91–108. doi: 10.1016/j.ijheatfluidflow.2015.11.007
  • A.N. Lipatnikov, V.A. Sabelnikov, S. Nishiki, T. Hasegawa, and N. Chakraborty, DNS assessment of a simple model for evaluating velocity conditioned to unburned gas in premixed turbulent flames, Flow Turb. Combust. 94 (2015), pp. 513–526. doi: 10.1007/s10494-014-9588-7
  • H.G. Weller, G. Tabor, A.D. Gosman, and C. Fureby, Application of flame wrinkling LES combustion model to a turbulent mixing layer, Proc. Combust. Inst. 27 (1998), pp. 899–907. doi: 10.1016/S0082-0784(98)80487-6
  • Y. Huai, A. Sadiki, S. Pfadler, M. Löffler, F. Beyrau, A. Leipertz, and F. Dinkelacker, Experimental assessment of scalar flux models for large eddy simulations of non-reacting flows, Turbul. Heat Mass Transfer 5 (2006), pp. 263–266.
  • S. Richard, O. Colin, O. Vermorel, A. Benkenida, C. Angelberger, and D. Veynante, Towards large eddy simulation of combustion in spark ignition engines, Proc. Combust. Inst. 31 (2007), pp. 3059–3066. doi: 10.1016/j.proci.2006.07.086
  • G. Lecocq, S. Richard, O. Colin, and L. Vervisch, Gradient and counter-gradient modeling in premixed flames: theoretical study and application to the LES of a lean premixed turbulent swirl-burner, Combust. Sci. Technol. 182 (2010), pp. 465–479. doi: 10.1080/00102200903462920
  • F. Dinkelacker, B. Manickam, and S.P.R. Muppala, Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective lewis number approach, Combust. Flame 158 (2011), pp. 1742–1749. doi: 10.1016/j.combustflame.2010.12.003
  • R.W. Bilger, S.B. Pope, K.N.C. Bray, and J.F. Driscoll, Paradigms in turbulent comustion research, Proc. Combust. Inst. 30 (2005), pp. 21–42. doi: 10.1016/j.proci.2004.08.273
  • A.N. Lipatnikov and J. Chomiak, Molecular transport effects on turbulent flame propagation and structure, Prog. Energy Combust. Sci. 31 (2005), pp. 1–73. doi: 10.1016/j.pecs.2004.07.001
  • P. Venkateswaran, A. Marshall, J. Seitzman, and T. Lieuwen, Scaling turbulent flame speeds of negative Markstein length fuel blends using leading points concepts, Combust. Flame 162 (2015), pp. 375–387. doi: 10.1016/j.combustflame.2014.07.028
  • A. Burluka, R.G. Gaughan, J.F. Griffiths, C. Mandilas, and R. Woolley, Experimental observations on the influence of hydrogen atoms diffusion on laminar and turbulent premixed burning velocities, Fuel 189 (2017), pp. 66–78. doi: 10.1016/j.fuel.2016.10.088
  • S.C. Li and Y.H. Kong, Diesel combustion modelling using LES turbulence model with detailed chemistry, Combust. Theory Model. 12 (2008), pp. 205–219. doi: 10.1080/13647830701487805
  • O. Vermorel, S. Richard, O. Colin, C. Angelberger, A. Benkenida, and D. Veynante, Towards the understanding of cyclic variability in a spark ignited engine using multicycle LES, Combust. Flame 156 (2009), pp. 1525–1541. doi: 10.1016/j.combustflame.2009.04.007
  • H.G. Im, P.G. Arias, S. Chaudhuri, and H.A. Uranakara, Direct numerical simulations of statistically stationary turbulent premixed flames, Combust. Sci. Techn. 188 (2016), pp. 1182–1198. doi: 10.1080/00102202.2016.1198789
  • M. P. Burke, M. Chaos, Y. Ju, F. L. Dryer, and S. J. Klippenstein, Comprehensive kinetic model for high-pressure combustion, Int. J. Chem. Kinematics 44 (2012), pp. 444–474. doi: 10.1002/kin.20603
  • R. Rogallo, Numerical experiments in homogeneous turbulence. NASA Technical Memorandum 81315, 1981.
  • T. Passot and A. Pouquet, Numerical simulation of compressible homogeneous flows in the turbulent regime, J. Fluid Mech. 181 (1987), pp. 441–466. doi: 10.1017/S0022112087002167
  • M. Klein, N. Chakraborty, and S. Ketterl, A comparison of strategies for direct numerical simulation of turbulence chemistry interaction in generic planar turbulent premixed flames, Flow Turb. Combust. (2017) DOI:10.1007/s10494-017-9843-9.
  • C.S. Yoo, Y. Wang, A. Trouvé, and H.G. Im, Characteristic boundary conditions for direct simulations of turbulent counterflow flames, Combust. Theory Model. 9 (2005), pp. 617–646. doi: 10.1080/13647830500307378
  • S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
  • I. Han and K.Y. Huh, Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion, Combust. Flame 152 (2008), pp. 194–205 doi: 10.1016/j.combustflame.2007.10.003
  • H. Reddy and J. Abraham, Two-dimensional direct numerical simulation evaluation of the flame surface density model for flames developing from an ignition kernel in lean methane/air mixtures under engine conditions, Phys. Fluids 24 (2012), pp. 105108. doi: 10.1063/1.4757655
  • C. Pera, S. Chevillard, and R. Reveillon, Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines, Combust. Flame 160 (2013), pp. 1020. doi: 10.1016/j.combustflame.2013.01.009
  • L. Cifuentes, C. Dopazo, J. Martin, and C. Jimenez, Local flow topologies and scalar structures in a turbulent premixed flame, Phys. Fluids 26 (2014), pp. 065108. doi: 10.1063/1.4884555
  • V. Papapostolou, D.H. Wacks, N. Chakraborty, M. Klein, and H.G. Im, Enstrophy transport conditional on local flow topologies in different regimes of premixed turbulent combustion, Sci. Rep. 7 (2017), pp. 1154. doi: 10.1038/s41598-017-11650-x
  • D.H. Wacks, N. Chakraborty, M. Klein, P.G. Arias, and H.G. Im, Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis, Phys. Rev. Fluids 1 (2016), pp. 083401. doi: 10.1103/PhysRevFluids.1.083401
  • N. Chakraborty, L. Wang, and M. Klein, Effects of Lewis number on streamline segment analysis of turbulent premixed flames, Phys. Rev. E 89 (2014), pp. 033015.
  • P.A. Libby, G. Masuya, J.B. Moss, and K.N.C. Bray, Turbulence production in premixed turbulent flames, Combust. Sci. Tech. 25 (1981), pp. 127–140. doi: 10.1080/00102208108547512
  • B.A. Durbin and P.A. Pettersson Reif, Statistical Theory and Modeling for Turbulent Flows, John Wilex and Sons, New York, NY, 2001.
  • J.H. Ferziger, W.C. Reynolds, and R.A. Clark, Evaluation of subgrid-scale models using an accurately simulated turbulent flow, J. Fluid Mech. 91 (1979), pp. 1–16. doi: 10.1017/S002211207900001X
  • N. Chakraborty and R.S. Cant, A priori analysis of the curvature and propagation terms of the flame surface density transport equation for large eddy simulation, Phys. Fluid 19 (2007), pp. 105101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.