528
Views
10
CrossRef citations to date
0
Altmetric
Articles

A LES/PDF simulator on block-structured meshes

, &
Pages 1-41 | Received 05 Dec 2017, Accepted 19 Apr 2018, Published online: 22 Jun 2018

References

  • S.R. Turns, An Introduction to Combustion, Concepts and Applications, Mc Graw Hill, Singapore, 2000.
  • S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000.
  • P.J. Colucci, F.A. Jaberi, P. Givi, and S.B. Pope, Filtered density function for large eddy simulation of turbulent reacting flows, Phys. Fluids 10 (1998), pp. 499–515. doi: 10.1063/1.869537
  • V. Raman, H. Pitsch, and R.O. Fox, Hybrid large-eddy simulation/Lagrangian filtered-density-function approach for simulating turbulent combustion, Combust. Flame 143 (2005), pp.56–78. doi: 10.1016/j.combustflame.2005.05.002
  • Y. Yang, H. Wang, S.B. Pope, and J.H. Chen, Large-eddy simulation/probability density function modelling of a non-premixed CO/H2 temporally evolving jet flame, Proc. Combust. Inst. 34 (2012), pp. 1241–1249. doi: 10.1016/j.proci.2012.08.015
  • R. Tirunagari and S.B. Pope, An investigation of turbulent premixed counterflow flames using large-eddy simulations and probability density function methods, Combust. Flame 166 (2016), pp. 229–242. doi: 10.1016/j.combustflame.2016.01.024
  • J. Kim and S.B. Pope, Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method, Combust. Theory Model. 18(3) (2014), pp. 388–413. doi: 10.1080/13647830.2014.919411
  • H. Pitsch, Large-eddy simulation of turbulent combustion, Annu. Rev. Fluid. Mech. 38 (2006), pp. 453–482. doi: 10.1146/annurev.fluid.38.050304.092133
  • F.A. Jaberi, P.J. Colucci, S. James, P. Givi, and S.B. Pope, Filtered mass density function for large-eddy simulation of turbulent reacting flows, J. Fluid. Mech. 401 (1999), pp. 85–121. doi: 10.1017/S0022112099006643
  • S.B. Pope, PDF methods for turbulent reactive flows, Prog. Energy. Combust. Sci. 11 (1985), pp. 119–192. doi: 10.1016/0360-1285(85)90002-4
  • Y.Z. Zhang and D.C. Haworth, A general mass consistency algorithm for hybrid particle/finite-volume PDF methods, J. Comput. Phys. 194 (2004), pp. 156–193. doi: 10.1016/j.jcp.2003.08.032
  • M. Muradoglu, P. Jenny, S.B. Pope, and D.A. Caughey, A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows, J. Comput. Phys. 152 (1999), pp. 342–371. doi: 10.1006/jcph.1999.6316
  • M. Muradoglu, S.B. Pope, and D.A. Caughey, The hybrid method for the PDF equations of turbulent reactive flows: Consistency conditions and correction algorithms, J. Comput. Phys. 172 (2001), pp. 841–878. doi: 10.1006/jcph.2001.6861
  • D.C. Haworth, Progress in probability density function methods for turbulent reacting flows, Prog. Energy. Combust. Sci. 36 (2010), pp. 168–259. doi: 10.1016/j.pecs.2009.09.003
  • H. Wang and S.B. Pope, Large eddy simulation/probability density function modelling of a turbulent CH4/H2/N2 jet flame, Proc. Combust. Inst. 33 (2011), pp. 1319–1330. doi: 10.1016/j.proci.2010.08.004
  • V. Raman and H. Pitsch, A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry, Proc. Combust. Inst. 31 (2007), pp. 1711–1719. doi: 10.1016/j.proci.2006.07.152
  • M.R.H. Sheikhi, T.G. Drozda, P. Givi, and S.B. Pope, Velocity-scalar filtered density function for large eddy simulation of turbulent flows, Phys. Fluids 15 (2003), pp. 2321–2337. doi: 10.1063/1.1584678
  • N. Ansari, G.M. Goldin, M.R.H. Sheikhi, and P. Givi, Filtered density function simulator on unstructured meshes, J. Comput. Phys. 230 (2011), pp. 7132–7150. doi: 10.1016/j.jcp.2011.05.015
  • A. Gupta, Large-eddy simulation of turbulent flames with radiation heat transfer, Ph.D. thesis, The Pennsylvania State University, 2011.
  • OpenFOAM, The open source CFD toolbox, OpenFOAM, 2004–2015. Available at http://www.openfoam.com/.
  • S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theory Model. 1 (1997), pp. 41–63. doi: 10.1080/713665229
  • L. Lu, S.R. Lantz, Z. Ren, and B.S. Pope, Computationally efficient implementation of combustion chemistry in parallel PDF calculations, J. Comput. Phys. 228 (2009), pp. 5490–5525. doi: 10.1016/j.jcp.2009.04.037
  • C. Celis and L.F.F. Silva, Study of mass consistency LES/FDF techniques for chemically reacting flows, Combust. Theory Model. 19 (2015), pp. 465–494. doi: 10.1080/13647830.2015.1048828
  • M.S. Sweeney, S. Hochgreb, M.J. Dunn, and R.S. Barlow, The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows, Combust. Flame 159 (2012), pp. 2896–2911. doi: 10.1016/j.combustflame.2012.06.001
  • P. Moin, K. Squires, W. Cabot, and S. Lee, A dynamic subgridscale model for compressible turbulence and scalar transport, Phys. Fluids A 3 (1991), pp. 2746–2757. doi: 10.1063/1.858164
  • C. Meneveau, T.S. Lund, and W.H. Cabot, Lagrangian dynamic subgrid-scale model of turbulence, J. Comput. Phys. 319 (1996), pp. 353–385.
  • H. Pitsch and H. Steiner, Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia Flame D), Phys. Fluids 12(10) (2000), pp. 2541–2554. doi: 10.1063/1.1288493
  • R. McDermott and S.B. Pope, A particle formulation for treating differential diffusion in filtered density function methods, J. Comput. Phys. 226 (2007), pp. 947–993. doi: 10.1016/j.jcp.2007.05.006
  • J. Villermaux, J.C. Devillon 1972. Representation de la coalescence et de la redispersion des domaines de segregation dans un fluide par un modele d'interaction phenomenologique, in Proceedings of the 2nd International Symposium on Chemical Reaction Engineering, pp. 1–13.
  • P.P. Popov, H. Wang, and S.B. Pope, Specific volume coupling and convergence properties in hybrid particle/finite volume algorithms for turbulent reactive flows, J. Comput. Phys. 294 (2015), pp. 110–126. doi: 10.1016/j.jcp.2015.03.001
  • P.L. Roe, Characteristic-based schemes for the Euler equations, Annu. Rev. Fluid. Mech. 18 (1986), pp. 337–365. doi: 10.1146/annurev.fl.18.010186.002005
  • R.I. Issa, Solution of the implicitly discretised fluid flow equation by operator splitting, J. Comput. Phys. 62 (1986), pp. 40–65. doi: 10.1016/0021-9991(86)90099-9
  • J.H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin, 2002.
  • R. Cao and S.B. Pope, Numerical integration of stochastic differential equations: Weak second-order mid-point scheme for application in the composition PDF method, J. Comput. Phys. 184 (2003), pp. 194–212. doi: 10.1016/S0021-9991(02)00054-2
  • P. Jenny, S.B. Pope, M. Muradoglu, and D.A. Caughey, A hybrid algorithm for the joint PDF equation for turbulent reactive flows, J. Comput. Phys. 166 (2001), pp. 281–252. doi: 10.1006/jcph.2000.6646
  • G.B. Macpherson, N. Nordin, and H.G. Weller, Particle tracking in unstructured, arbitrary polyhedral meshes for use in CFD and molecular dynamics, Comm. Numer. Methods Eng. 25 (2009), pp. 263–273. doi: 10.1002/cnm.1128
  • T.D. Dreeben and S.B. Pope, Nonparametric estimation of mean fields with application to particle probability density function model for turbulent flows, Tech. rep., Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, 1992.
  • R.S. Barlow and J.H. Frank, Effects of turbulence on species mass fractions in methane/air jet flames, Proc. Combust. Inst. 27 (1998), pp. 1087–1095. doi: 10.1016/S0082-0784(98)80510-9
  • M.S. Sweeney, S. Hochgreb, M.J. Dunn, and R.S. Barlow, The structure of turbulent stratified and premixed methane/air flames II: Swirling flows, Combust. Flame 159 (2012), pp. 2912–2929. doi: 10.1016/j.combustflame.2012.05.014
  • F. Proch and M. Kempf, Numerical analysis of the Cambridge stratified flame series using artificial thickened flame LES with tabulated premixed flame chemistry, Combust. Flame 161 (2014), pp. 2627–2646. doi: 10.1016/j.combustflame.2014.04.010
  • R.R. Tirunagari, M.W.A. Pettit, A.M. Kempf, and S.B. Pope, A simple approach for specifying velocity inflow boundary conditions in simulations of turbulent opposed-jet flows, Flow Turbul. Combust. 98 (2017), pp. 131–153. doi: 10.1007/s10494-016-9743-4
  • C.J. Sung, C.K. Law, and J.Y. Chen, An augmented reduced mechanism for methane oxidation with comprehensive global parametric validation, Proc. Combust. Inst. 27 (1998), pp. 295–304. doi: 10.1016/S0082-0784(98)80416-5
  • V. Hiremath, S.R. Lantz, H. Wang, and S.B. Pope, Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion, Combust. Flame 159 (2012), pp. 3096–3109. doi: 10.1016/j.combustflame.2012.04.013
  • J. Janicka, W. Kolbe, and W. Kollman, Closure of the transport equation for the probability density function of turbulent scalar fields, J. Non-Equilib. Thermodyn. 4 (1979), pp. 47–66. doi: 10.1515/jnet.1979.4.1.47
  • G. Esposito and H.K. Chelliah, Skeletal reaction models based on principal component analysis: Application to ethylene-air ignition, propagation, and extinction phenomena, Combust. Flame 158 (2011), pp. 477–489. doi: 10.1016/j.combustflame.2010.09.010
  • R. Zhou, S. Balusamy, M.S. Sweeney, R.S. Barlow, and S. Hochgreb, Flow field measurements of a series of turbulent premixed and stratified methane/air flames, Combust. Flame 160 (2013), pp. 2017–2028. doi: 10.1016/j.combustflame.2013.04.007
  • H. Turkeri, X. Zhao, B.S. Pope, and M. Muradoglu, Large eddy simulation/probability density function simulations of Cambridge turbulent stratified flame series with differential diffusion, Combust. Flame (to be submitted).
  • P. Weigand, W. Meier, X.R. Duan, W. Stricker, and M. Aigner, Investigations of swirl flames in a gas turbine model combustor: I. Flow field, structures, temperature, and species distributions, Combust. Flame 144(1–2) (2006), pp. 205–224. doi: 10.1016/j.combustflame.2005.07.010
  • W. Meier, X.R. Duan, and P. Weigand, Investigations of swirl flames in a gas turbine model combustor: II. Turbulence–chemistry interactions, Combust. Flame 144(1–2) (2006), pp. 225–236. doi: 10.1016/j.combustflame.2005.07.009

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.