675
Views
31
CrossRef citations to date
0
Altmetric
Articles

Chemical-diffusive models for flame acceleration and transition-to-detonation: genetic algorithm and optimisation procedure

, &
Pages 67-86 | Received 04 Jul 2017, Accepted 18 May 2018, Published online: 25 Jun 2018

References

  • E.S. Oran and V.N. Gamezo, Origins of the deflagration-to-detonation transition in gas-phase combustion, Combust. Flame. 148 (2007), pp. 4–47. doi: 10.1016/j.combustflame.2006.07.010
  • R.K. Zipf, V.N. Gamezo, M.J. Sapko, W.P. Marchewka, K.M. Mohamed, E.S. Oran, D.A. Kessler, E.S. Weiss, J.D. Addis, F.A. Karnack, and D.D. Sellers, Methane-air detonation experiments at NIOSH Lake Lynn laboratory, J. Loss. Prev. Process. Ind. 26 (2013), pp. 295–301. doi: 10.1016/j.jlp.2011.05.003
  • R.K. Zipf, M.J Sapko, and J.F. Brune, Explosion pressure design criteria for new seals in U.S. coal mines, NIOSH IC 9500 Report, U.S. Dept. HHS, Pittsburgh, PA, 2007.
  • G. Ciccarelli and S. Dorofeev, Flame acceleration and transition to detonation in ducts, Prog. Energy. Combust. Sci. 34 (2008), pp. 499–550. doi: 10.1016/j.pecs.2007.11.002
  • G.D. Roy, S.M. Frolov, A.A. Borisov, and D.W. Netzer, Pulse detonation propulsion: Challenges, current status, and future perspective, Prog. Energy. Combust. Sci. 30 (2004), pp. 545–672. doi: 10.1016/j.pecs.2004.05.001
  • Y. Ju, C.P. Cadou, and K. Maruta, Microscale Combustion and Power Generation, Engineering Collection, Momentum Press, New York, 2015. .
  • C.A. Nordeen, D. Schwer, F. Schauer, J. Hoke, T. Barber, and B. Cetegen, Thermodynamic model of a rotating detonation engine, Combust. Explos. Shock. Waves. 50 (2014), pp. 568–577. doi: 10.1134/S0010508214050128
  • H. Wang and A. Laskin, A comprehensive kinetic model of ethylene and acetylene oxidation at high temperatures, Internal Report, University of Delaware, Newark, 1998.
  • A. Kazakov, H. Wang, and M. Frenklach, Detailed modeling of soot formation in laminar premixed ethylene flames at a pressure of 10 bar, Combust. Flame. 100 (1995), pp. 111–120. doi: 10.1016/0010-2180(94)00086-8
  • B.D. Taylor, D.A. Kessler, V.N. Gamezo, and E.S. Oran, Numerical simulations of hydrogen detonations with detailed chemical kinetics, Proc. Combust. Inst. 34 (2013), pp. 2009–2016. doi: 10.1016/j.proci.2012.05.045
  • A.M. Khokhlov and E.S. Oran, Numerical simulation of detonation initiation in a flame brush: The role of hot spots, Combust. Flame. 119 (1999), pp. 400–416. doi: 10.1016/S0010-2180(99)00058-9
  • V.N. Gamezo, A.M. Khokhlov, and E.S. Oran, The influence of shock bifurcations on shock-flame interactions and DDT, Combust. Flame. 126 (2001), pp. 1810–1826. doi: 10.1016/S0010-2180(01)00291-7
  • V.N. Gamezo, T. Ogawa, and E.S. Oran, Numerical simulations of flame propagation and DDT in obstructed channels filled with hydrogen-air mixture, Proc. Combust. Inst. 31 (2007), pp. 2463–2471. doi: 10.1016/j.proci.2006.07.220
  • V.N. Gamezo, T. Ogawa, and E.S. Oran, Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing, Combust. Flame. 155 (2008), pp. 302–315. doi: 10.1016/j.combustflame.2008.06.004
  • V.N. Gamezo, T. Ogawa, and E.S. Oran, Deflagration-to-detonation transition in H2-air mixtures: Effect of blockage ratio, AIAA Paper 440 (2009). Available at http://arc.aiaa.org/doi/pdf/10.2514/6.2009-440.
  • T. Ogawa, V.N. Gamezo, and E.S. Oran, Flame acceleration and transition to detonation in an array of square obstacles, J. Loss. Prev. Process. Ind. 26 (2013), pp. 355–362. doi: 10.1016/j.jlp.2011.12.009
  • T. Ogawa, E.S. Oran, and V.N. Gamezo, Numerical study on flame acceleration and DDT in an inclined array of cylinders using an AMR technique, Comput. Fluids 85 (2013), pp. 63–70. doi: 10.1016/j.compfluid.2012.09.029
  • D.A. Kessler, V.N. Gamezo, and E.S. Oran, Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems, Combust. Flame. 157 (2010), pp. 2063–2077. doi: 10.1016/j.combustflame.2010.04.011
  • D.A. Kessler, V.N. Gamezo, and E.S. Oran, Gas-phase detonation propagation in mixture composition gradients, Philos. Trans. 370 (2012), pp. 567–596. doi: 10.1098/rsta.2011.0342
  • A. Özgen, Optimizing simplified one-step chemical-diffusive models for deflagration-to-detonation transition calculations, MS Paper, University of Maryland, College Park, 2016.
  • D.E. Goldberg, Genetic algorithms in search, optimisation, and machine learning, Addison-Wesley Publishing Company, Reading, MA, 1989.
  • S. Gordon and B. McBride, Computer program for calculation of complex chemical equilibrium composition, rocket performance, incident and reflected shocks and Chapman-Jouguet detonation, NASA SP-273, NASA Lewis Research Center, Cleveland, 1976.
  • D.G. Goodwin, H.K. Moffat, and R.L. Speth, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, 2016. Version 2.1. Available at http://www.cantera.org.
  • Explosion Dynamics Laboratory, California Institute of Technology, Shock & Detonation Toolbox for Cantera 2.1 (2015).
  • Y. Zeldovich, On the theory of the propagation of detonation in gaseous systems, NACA Tech. Memo No. 1261, National Advisory Committee for Aeronautics, Washington, DC, 1950.
  • J. von Neumann, Theory of detonation waves, John von Neumann 1903-1957 Collected Works, Pergamon Press, Oxford, 1963.
  • W. Döring, On the detonation processes in gases, Ann. Phys. 43 (1943), pp. 421–436. doi: 10.1002/andp.19434350605
  • J. Lagarias, J. Reeds, M. Wright, and P. Wright, Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions, SIAM J. Optim. 9 (1998), pp. 112–147. doi: 10.1137/S1052623496303470
  • G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., V.V. Lissianski, and Z. Qin, GRI-MECH 3.0, Available at http://www.me.berkeley.edu/grimech/.
  • R.W. Houim, A. Özgen, and E.S. Oran, The role of spontaneous waves in the deflagration-to-detonation transition in submillimetre channels, Combust. Theory Model. 20 (2016), pp. 1068–1087. doi: 10.1080/13647830.2016.1249523
  • R.W. Houim and K.K. Kuo, A low-dissipation and time-accurate method for compressible multi-component flow with variable specific heat ratios, J. Comput. Phys. 230 (2011), pp. 8527–8553. doi: 10.1016/j.jcp.2011.07.031
  • Boxlib, Center for Computational Sciences and Engineering, University of California, Berkeley, 03-2015. Available at https://ccse.lbl.gov/index.html.
  • A. Chaudhuri, A. Hadjadj, and A. Chinnayya, On the use of immersed boundary methods for shock/obstacle interactions, J. Comput. Phys. 230(5) (2011), pp. 1731–1748. doi: 10.1016/j.jcp.2010.11.016
  • M. Kuznetsov, G. Ciccarelli, S. Dorofeev, V. Alekseev, Y. Yankin, and T. Kim, DDT in methane-air mixtures, Shock Waves 12 (2002), pp. 215–220. doi: 10.1007/s00193-002-0155-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.