343
Views
1
CrossRef citations to date
0
Altmetric
Articles

Simulation of diesel spray combustion using LES and a multicomponent vapourisation model

, &
Pages 87-104 | Received 24 Oct 2017, Accepted 16 May 2018, Published online: 20 Jun 2018

References

  • J. Smagorinsky, General circulation experiments with the primitive equations, Mon. Weather Rev. 91 (1963), pp. 99–164. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • A. Banaeizadeh, A. Afshari, H. Schock, and F. Jaberi, Large-eddy simulations of turbulent flows in internal combustion engines, Int. J. Heat Mass Transfer 60 (2013), pp. 781–796. doi: 10.1016/j.ijheatmasstransfer.2012.12.065
  • B. Yin, S. Yu, H. Jia, and J. Yu, Numerical research of diesel spray and atomization coupled cavitation by large Eddy simulation (LES) under high injection pressure, Int. J. Heat Fluid Flow 59 (2016), pp. 1–9. doi: 10.1016/j.ijheatfluidflow.2016.01.005
  • M. Jangi, R. Solsjo, B. Johansson, and X.S. Bai, On large eddy simulation of diesel spray for internal combustion engines, Int. J. Heat Fluid Flow 53 (2015), pp. 68–80. doi: 10.1016/j.ijheatfluidflow.2015.02.002
  • C. Bekdemir, L.M.T. Somers, L.P.H. de Goey, J. Tillou, and C. Angelberger, Predicting diesel combustion characteristics with large-eddy simulations including tabulated chemical kinetics, Proc. Combust. Inst. 34 (2013), pp. 3067–3074. doi: 10.1016/j.proci.2012.06.160
  • A. Irannejad and F. Jaberi, Large eddy simulation of turbulent spray breakup and evaporation, Int. J. Multiphase Flow 61 (2014), pp. 108–128. doi: 10.1016/j.ijmultiphaseflow.2014.01.004
  • S.B. Pope, Turbulent flows, Cambridge University Press, Cambridge, 2000.
  • E. Pomraning and C.J. Rutland, A dynamic one equation non-viscosity LES model, Am. Inst. Aeronaut. Astronaut. J. 40 (2002), pp. 689–701. doi: 10.2514/2.1701
  • Q. Xue, S. Som, P.K. Senecal, and E. Pomraning, Large eddy simulation of fuel-spray under non-reaction IC engine conditions, Atomization Sprays 23 (2013), pp. 925–955. doi: 10.1615/AtomizSpr.2013008320
  • Y. Pei, S. Som, E. Pomraning, P.K. Senecal, S.A. Skeen, J. Manin, and L.M. Pickett, Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions, Combust. Flame 162 (2015), pp. 4442–4455. doi: 10.1016/j.combustflame.2015.08.010
  • V. Vuorinen, H. Hillamo, O. Kaario, M. Larmi, and L. Fuchs, Large eddy simulation of droplet stokes number effects on turbulent spray shape, Atomization Sprays 20 (2011), pp. 93–18. doi: 10.1615/AtomizSpr.v20.i2.10
  • S. Elghobashi, On predicting particle laden turbulent flows, Appl. Sci. Res 52 (1994), pp. 309–329. doi: 10.1007/BF00936835
  • T.G. Almeida and F.A. Jaberi, Large-eddy simulation of a dispersed particle-laden turbulent round jet, Int. J. Heat Mass Transfer 51 (2008), pp. 683–695. doi: 10.1016/j.ijheatmasstransfer.2007.04.023
  • N. Bharadwaj, C.J. Rutland, and S. Chang, Large eddy simulation modeling of spray-induced turbulence effects, Int. J. Eng. Res. 10 (2009), pp. 97–119. doi: 10.1243/14680874JER02309
  • W.P. Jones, A.J. Marquis, and D. Noh, LES of a methanol spray flame with a stochastic sub-grid model, Proc. Combust. Inst. 35 (2014), pp. 1685–1691. doi: 10.1016/j.proci.2014.06.086
  • P. Kundu, M.M. Ameen, and S. Som, Importance of turbulence-chemistry interactions at low temperature engine conditions, Combust. Flame 183 (2017), pp. 283–298. doi: 10.1016/j.combustflame.2017.05.025
  • M. Bolla, D. Farrace, Y.M. Wright, K. Boulouchos, and E. Mastorakos, Influence of turbulence-chemistry interaction for n-heptane spray combustion under diesel engine conditions with emphasis on soot formation and oxidation, Combust. Theory Model 18 (2014), pp. 330–360. doi: 10.1080/13647830.2014.898795
  • J. Tamim and W. Hallett, A continuous thermodynamics model for multicomponent droplet vaporization, Chem. Eng. Sci. 50 (1995), pp. 2933–2942. doi: 10.1016/0009-2509(95)00131-N
  • L.C. Selle and J. Bellan, Characteristics of transitional multicomponent gaseous and drop-laden mixing layers from direct numerical simulation: Composition effects, Phys. Fluids 19 (2007), pp. 345. doi: 10.1063/1.2734997
  • L. Zhang and S.C. Kong. Modeling of multi-component fuel vaporization and combustion for gasoline and diesel spray, Chem. Eng. Sci. 64 (2009), pp. 3688–3696. doi: 10.1016/j.ces.2009.05.013
  • J.W. Deardorff, A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers, J. Fluid Mech. 41 (1970), pp. 453–480. doi: 10.1017/S0022112070000691
  • A. Yoshizawa and K. Horiuti, A statistically-derived sub-grid scale kinetic energy model for the large-eddy simulation of turbulent flows, J. Phys. Soc. Jpn 54 (1985), pp. 2834–2839. doi: 10.1143/JPSJ.54.2834
  • S. Stolz, N.A. Adams, and L. Kleiser, An approximate de-convolution model for large-eddy simulation with application to incompressible wall-bounded flows, Phys. Fluids 13 (2001), pp. 997–1015. doi: 10.1063/1.1350896
  • W.L.H. Hallett, A simple model for the vaporization of droplets with large numbers of components, Combust. Flame 121 (2000), pp. 334–344. doi: 10.1016/S0010-2180(99)00144-3
  • T. Dan, S. Takagishi, J. Senda, and H. Fujimoto, Organized structure and motion in diesel spray, SAE Tech. Paper 970641, 1997.
  • M.A. Patterson and R.D. Reitz, Modeling the effects of fuel spray characteristics on diesel engine combustion and emissions, SAE Tech. Paper 980131, 1998.
  • ‘ Engine Combustion Network,’ Sandia National Laboratories, https://ecn.sandia.gov/ecn-data-search/.
  • L.M. Pickett and D.L. Siebers, Soot in diesel fuel jets: Effects of ambient temperature, ambient density, and injection pressure, Combust. Flame 138 (2004), pp. 114–135. doi: 10.1016/j.combustflame.2004.04.006
  • S.C. Kong and R.D. Reitz, Use of detailed chemical kinetics to study HCCI engine combustion with consideration of turbulent mixing effects, J. Eng. Gas Turbines Power 124 (2002), pp. 702–707. doi: 10.1115/1.1413766
  • Y.H. Li and S.C. Kong. Diesel combustion modeling using LES turbulence model with detailed chemistry, Combust. Theory Model 12 (2008), pp. 205–219. doi: 10.1080/13647830701487805

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.