527
Views
9
CrossRef citations to date
0
Altmetric
Articles

A fourth-order adaptive mesh refinement algorithm for the multicomponent, reacting compressible Navier–Stokes equations

, ORCID Icon, , &
Pages 592-625 | Received 27 Jun 2018, Accepted 26 Dec 2018, Published online: 15 Jan 2019

References

  • M.J. Berger and J. Oliger, Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53 (1984), pp. 484–512. doi: 10.1016/0021-9991(84)90073-1
  • M.J. Berger and P. Colella, Local adaptive mesh refinement for shock hydrodynamics, J. Comput. Phys. 82 (1989), pp. 64–84. doi: 10.1016/0021-9991(89)90035-1
  • J. Bell, M. Berger, J. Saltzman, and M. Welcome, A three-dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM J. Sci. Comput. 15 (1994), pp. 127–138. doi: 10.1137/0915008
  • A. Dubey, A. Almgren, J. Bell, M. Berzins, S. Brandt, G. Bryan, P. Colella, D. Graves, M. Lijewski, Löffler F., O'Shea B., E. Schnetter, B.V. Straalen, and K. Weide, A survey of high level frameworks in block-structured adaptive mesh refinement packages, J. Parallel Distrib. Comput. 74 (2014), pp. 3217–3227. domain-Specific Languages and High-Level Frameworks for High-Performance Computing. doi: 10.1016/j.jpdc.2014.07.001
  • P. McCorquodale and P. Colella, A high-order finite-volume method for conservation laws on locally refined grids, Commun. Appl. Math. Comput. Sci. 6 (2011), pp. 1–25. doi: 10.2140/camcos.2011.6.1
  • M.L. Minion, Semi-implicit spectral deferred correction methods for ordinary differential equations, Commun. Appl. Math. Comput. Sci. 1 (2003), pp. 471–500.
  • A. Bourlioux, A.T. Layton, and M.L. Minion, High-order multi-implicit spectral deferred correction methods for problems of reactive flow, J. Comput. Phys. 189 (2003), pp. 651–675. doi: 10.1016/S0021-9991(03)00251-1
  • E.L. Bouzarth and M.L. Minion, A multirate time integrator for regularized stokeslets, J. Comput. Phys. 229 (2010), pp. 4208–4224. doi: 10.1016/j.jcp.2010.02.006
  • R. Speck, D. Ruprecht, M. Emmett, M. Minion, M. Bolten, and R. Krause, A multi-level spectral deferred correction method, BIT Numer. Math. 55 (2015), pp. 843–867. doi: 10.1007/s10543-014-0517-x
  • M. Emmett and M.L. Minion, Toward an efficient parallel in time method for partial differential equations, Commun. Appl. Math. Comput. Sci. 7 (2012), pp. 105–132. doi: 10.2140/camcos.2012.7.105
  • A. Ern and V. Giovangigli, Fast and accurate multicomponent transport property evaluation, J. Comput. Phys. 120 (1995), pp. 105–116. doi: 10.1006/jcph.1995.1151
  • V. Titarev and E. Toro, Finite-volume WENO schemes for three-dimensional conservation laws, J. Comput. Phys. 201 (2004), pp. 238–260. doi: 10.1016/j.jcp.2004.05.015
  • C.W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations: Lectures given at the 2nd Session of the Centro Internazionale Matematico Estivo (C.I.M.E.) held in Cetraro, Italy, June 23–28, 1997, A. Quarteroni, ed., Springer, Berlin, Heidelberg, 1998, pp. 325–432.
  • M. Berger and I. Rigoutsos, An algorithm for point clustering and grid generation, IEEE Trans. Syst. Man Cybern. 21 (1991), pp. 1278–1286. doi: 10.1109/21.120081
  • A. Brandt, Multi-level adaptive solutions to boundary-value problems, Math. Comput. 31 (1977), pp. 333–390. doi: 10.1090/S0025-5718-1977-0431719-X
  • V. Granet, O. Vermorel, T. Leonard, L. Gicquel, and T. Poinsot, Comparison of nonreflecting outlet boundary conditions for compressible solvers on unstructured grids, AIAA J. 48 (2010), pp. 2348–2364. doi: 10.2514/1.J050391
  • D. Lecoanet, M. McCourt, E. Quataert, K.J. Burns, G.M. Vasil, J.S. Oishi, B.P. Brown, J.M. Stone, and O'Leary R.M., A validated non-linear Kelvin–Helmholtz benchmark for numerical hydrodynamics, Mon. Not. R. Astron. Soc. 455 (2016), pp. 4274–4288. doi: 10.1093/mnras/stv2564
  • M. Emmett, W. Zhang, and J.B. Bell, High-order algorithms for compressible reacting flow with complex chemistry, Combust. Theory Model. 18 (2014), pp. 361–387. doi: 10.1080/13647830.2014.919410
  • J. Li, Z. Zhao, A. Kazakov, and F.L. Dryer, An updated comprehensive kinetic model of hydrogen combustion, Int. J. Chem. Kinet. 36 (2004), pp. 566–575. doi: 10.1002/kin.20026
  • A. Nonaka, M.S. Day, and J.B. Bell, A conservative, thermodynamically consistent numerical approach for low Mach number combustion. Part I: Single-level integration, Combust. Theory Model. 22 (2017), pp. 156–184. doi: 10.1080/13647830.2017.1390610
  • A. Majda and J. Sethian, The derivation and numerical solution of the equations for zero Mach number combustion, Combust. Sci. Tech. 42 (1985), pp. 185–205. doi: 10.1080/00102208508960376
  • M.S. Day and J.B. Bell, Numerical simulation of laminar reacting flows with complex chemistry, Combust. Theory Model. 4 (2000), pp. 535–556. doi: 10.1088/1364-7830/4/4/309
  • E. Motheau and J. Abraham, A high-order numerical algorithm for DNS of low-Mach-number reactive flows with detailed chemistry and quasi-spectral accuracy, J. Comput. Phys. 313 (2016), pp. 430–454. doi: 10.1016/j.jcp.2016.02.059
  • J. Bell, M. Day, J. Grcar, and M. Lijewski, Active control for statistically stationary turbulent premixed flame simulations, Commun. Appl. Math. Comput. Sci. 1 (2006), pp. 29–51. doi: 10.2140/camcos.2006.1.29
  • G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski, and Z. Qin, GRI-MECH 3.0. Available at http://www.me.berkeley.edu/gri_mech/
  • A.V. Maaren, D.S. Thung, and L.R.H.D. Goey, Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures, Combust. Sci. Tech. 96 (1994), pp. 327–344. doi: 10.1080/00102209408935360
  • A. Bhagatwala, Z. Luo, H. Shen, J.A. Sutton, T. Lu, and J.H. Chen, Numerical and experimental investigation of turbulent DME jet flames, Proc. Combust. Inst. 35 (2015), pp. 1157–1166. doi: 10.1016/j.proci.2014.05.147

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.