461
Views
15
CrossRef citations to date
0
Altmetric
Articles

Adaptive chemistry lookup tables for combustion simulations using optimal B-spline interpolants

ORCID Icon, , &
Pages 674-699 | Received 22 Mar 2018, Accepted 30 Sep 2018, Published online: 27 Feb 2019

References

  • C. Pantano, Direct simulation of non-premixed flame extinction in a methane-air jet with reduced chemistry, J. Fluid Mech. 514 (2004), pp. 231–270. doi: 10.1017/S0022112004000266
  • U. Maas and S.B. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combust. Flame 88 (1992), pp. 239–264. doi: 10.1016/0010-2180(92)90034-M
  • N. Peters, Local quenching due to flame stretch and non-premixed turbulent combustion, Combust. Sci. Technol. 30 (1983), pp. 1–17. doi: 10.1080/00102208308923608
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10 (1984), pp. 319–339. doi: 10.1016/0360-1285(84)90114-X
  • J.A. van Oijen, F.A. Lammers, and L.P.H. de Goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame 127 (2001), pp. 2124–2134. doi: 10.1016/S0010-2180(01)00316-9
  • O. Gicquel, N. Darabiha, and D. Thevenin, Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM, Proc. Combust. Inst. 28 (2000), pp. 1901–1908. doi: 10.1016/S0082-0784(00)80594-9
  • R.J.M. Bastiaans, J.A. van Oijen, S.M. Martin, L.P.H. de Goey, and H. Pitsch, DNS of Lean Premixed Turbulent Spherical Flames with a Flamelet Generated Manifold, Annual Research Briefs, Center for Turbulence Research, Stanford, 2004.
  • J.A. van Oijen, R.J.M. Bastiaans, G.R.A. Groot, and L.P.H. de Goey, Direct numerical simulations of premixed turbulent flames with reduced chemistry: Validation and flamelet analysis, Flow Turbulence Combust. 75 (2005), pp. 67–84. doi: 10.1007/s10494-005-8592-3
  • L.M. Verhoeven, W.J.S. Ramaekers, J.A. van Oijen, and L.P.H. de Goey, Modeling non-premixed laminar co-flow flames using flamelet-generated manifolds, Combust. Flame 159 (2012), pp. 230–241. doi: 10.1016/j.combustflame.2011.07.011
  • C. Bekdemir, B. Somers, and P.de Goey, DNS with detailed and tabulated chemistry of engine relevant igniting systems, Combust. Flame 161 (2014), pp. 210–221. doi: 10.1016/j.combustflame.2013.08.022
  • E. Knudsen, H. Kolla, E.R. Hawkes, and H. Pitsch, LES of a premixed jet flame DNS using a strained flamelet model, Combust. Flame 160 (2013), pp. 2911–2927. doi: 10.1016/j.combustflame.2013.06.033
  • M.E. Mueller and H. Pitsch, LES model for sooting turbulent nonpremixed flames, Combust. Flame 159 (2012), pp. 2166–2180. doi: 10.1016/j.combustflame.2012.02.001
  • P. Trisjono, K. Kleinheinz, H. Pitsch, and S. Kang, Large eddy simulation of stratified and sheared flames of a premixed turbulent stratified flame burner using a flamelet model with heat loss, Flow Turbulence Combust 92 (2014), pp. 201–235. doi: 10.1007/s10494-013-9522-4
  • M.E. Mueller, Q.N. Chan, N.H. Qamar, B.B. Dally, H. Pitsch, Z.T. Alwahabi, and G.J. Nathan, Experimental and computational study of soot evolution in a turbulent nonpremixed bluff body ethylene flame, Combust. Flame 160 (2013), pp. 1298–1309. doi: 10.1016/j.combustflame.2013.02.010
  • M. Ihme, C. Schmitt, and H. Pitsch, Optimal artificial neural networks and tabulation methods for chemistry representation in LES of a bluff-body swirl-stabilized flame, Proc. Combust. Inst. 32 (2009), pp. 1527–1535. doi: 10.1016/j.proci.2008.06.100
  • L. Shunn and F. Ham, Consistent and accurate state evaluations in variable-density flow simulations, Annual Research Briefs, Center for Turbulence Research, Stanford, 2006.
  • T. Turányi, Parameterization of reaction mechanisms using orthonormal polynomials, Comput. Chem. 18 (1994), pp. 45–54. doi: 10.1016/0097-8485(94)80022-7
  • M. Ihme, A.L. Marsden, and H. Pitsch, Generation of optimal artificial neural networks using a pattern search algorithm: Application to approximation of chemical systems, Neural Comput. 20 (2007), pp. 573–601. doi: 10.1162/neco.2007.08-06-316
  • G. Ribert, O. Gicquel, N. Darabiha, and D. Veynante, Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames, Combust. Flame 146 (2006), pp. 649–664. doi: 10.1016/j.combustflame.2006.07.002
  • K. Wang., G. Ribert, P. Domingo, and L. Vervisch, Self-similar behavior and chemistry tabulation of burnt-gas diluted premixed flamelets including heat-loss, Combust. Theory Model. 14 (2010), pp. 541–570. doi: 10.1080/13647830.2010.502248
  • G. Ribert, L. Vervisch, P. Domingo, and Y.S. Niu, Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical of premixed flames, Flow Turbulence Combust. 92 (2014), pp. 175–200. doi: 10.1007/s10494-013-9520-6
  • I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Q. Appl. Math. 4 (1946), pp. 45–99. doi: 10.1090/qam/15914
  • G. Farin, Curves and Surfaces for CAGD: A Practical Guide, Morgan Kaufmann, San Francisco, CA, 2001.
  • C. de Boor, On calculating with B-splines, J. Approx. Theory 6 (1972), pp. 50–62. doi: 10.1016/0021-9045(72)90080-9
  • M. Cox, The numerical evaluation of B-splines, IMA J. Appl. Math. 10 (1972), pp. 134–149. doi: 10.1093/imamat/10.2.134
  • H. Pitsch, A consistent level set formulation for large-eddy simulation of premixed turbulent combustion, Combust. Flame 143 (2005), pp. 587–598. doi: 10.1016/j.combustflame.2005.08.031
  • H. Pitsch, Large-eddy simulation of turbulent combustion, Annu. Rev. Fluid Mech. 38 (2006), pp. 453–482. doi: 10.1146/annurev.fluid.38.050304.092133
  • V. Moureau, B. Fiorina, and H. Pitsch, A level set formulation for premixed combustion LES considering the turbulent flame structure, Combust. Flame 156 (2009), pp. 801–812. doi: 10.1016/j.combustflame.2009.01.019
  • E. Knudsen, S.H. Kim, and H. Pitsch, An analysis of premixed flamelet models for large eddy simulation of turbulent combustion, Phys. Fluids 22 (2010), pp. 115109. doi: 10.1063/1.3490043
  • H. Pitsch, Flamemaster: A C++ computer program for 0D combustion and 1D laminar flame calculations, 1998.
  • C.D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech. 504 (2004), pp. 73–97. doi: 10.1017/S0022112004008213
  • M. Ihme, C.M. Cha, and H. Pitsch, Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion by a flamelet/progress variable approach, Proc. Combust. Inst. 30 (2005), pp. 793–800. doi: 10.1016/j.proci.2004.08.260
  • M. Germano, U. Piomelli, P. Moin, and W.H. Cabot, A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A 3 (1991), pp. 1760–1765. doi: 10.1063/1.857955
  • D.K. Lilly, A proposed modification of the Germano subgrid scale closure method, Phys. Fluids A 4 (1992), pp. 633–635. doi: 10.1063/1.858280
  • L. Demkowicz, J. Kurtz, D. Pardo, M. Paszenski, W. Rachowicz, and A. Zdunek, Computing with HP-Adaptive Finite Elements, Chapman & Hall/CRC, Taylor & Francis Group, Boca Raton, FL, 2007.
  • L. Dalcin, PetIGA Web page, 2013, https://bitbucket.org/dalcinl/petiga.
  • S. Balay, W.D. Gropp, L.Curfman McInnes, and B.F. Smith, Efficient management of parallelism in object oriented numerical software libraries, in Modern Software Tools in Scientific Computing, Birkhäuser Press, 1997, pp. 163–202.
  • S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, B.F. Smith, and H. Zhang, PETSc Users Manual, aNL-95/11 - Revision 3.3, Argonne National Laboratory, 2012.
  • S. Balay, J. Brown, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, B.F. Smith, and H. Zhang, PETSc Web page, 2012, http://www.mcs.anl.gov/petsc.
  • P.A.M. Kalt, Y.A. Al-Abdeli, A.R. Masri, and R.S. Barlow, Swirling turbulent nonpremixed flames of methane: Flow field and compositional structures, Proc. Combust. Inst. 29 (2002), pp. 1913–1919. doi: 10.1016/S1540-7489(02)80232-2
  • Y.A. Al-Abdeli and A.R. Masri, Stability characteristics and flowfields of turbulent non-premixed swirling flames, Combust. Theory Model. 7 (2003), pp. 731–766. doi: 10.1088/1364-7830/7/4/007
  • A.R. Masri, P.A.M. Kalt, and R.S. Barlow, The compositional structure of swirl-stabilized turbulent nonpremixed flames, Combust. Flame. 137 (2004), pp. 1–37. doi: 10.1016/j.combustflame.2003.12.004
  • A.R. Masri, Database of clean combustion research group at the university of Sydney, 2015, http://web.aeromech.usyd.edu.au/thermofluids/database.php.
  • O. Desjardins, G. Blanquart, G. Balarac, and H. Pitsch, High order conservative finite difference scheme for variable density low mach number turbulent flows, J. Comput. Phys. 227 (2008), pp. 7125–7159. doi: 10.1016/j.jcp.2008.03.027
  • R.D. Falgout, J.E. Jones, and U.M. Yang, Pursuing scalability for hypre's conceptual interfaces, CM Trans. Math. Softw. 31 (2005), pp. 326–350. doi: 10.1145/1089014.1089018
  • R.D. Falgout, J.E. Jones, and U.M. Yang, The design and implementation of hypre, a library of parallel high performance preconditioners, in Numerical Solution of Partial Differential Equations on Parallel Computers, Lecture Notes in Computational Science and Engineering, Vol. 51, Springer, Berlin, 2006, pp. 267–294.
  • C.T. Bowman, R.K. Hanson, D.F. Davidson, W.C. Gardiner, Jr., V. Lissianski, G.P. Smith, D.M. Golden, M. Frenklach, and M. Goldenberg, GRI-Mech 2.11, 2015, http://www.me.berkeley.edu/gri_mech.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.