256
Views
7
CrossRef citations to date
0
Altmetric
Articles

A hybrid EDC/Flamelet approach for modelling biomass combustion of grate-firing furnace

&
Pages 716-747 | Received 04 Jun 2018, Accepted 14 Feb 2019, Published online: 05 Mar 2019

References

  • C. Yin, L. Rosendahl, and S. Kær, Grate-firing of biomass for heat and power production, Prog. Energ. Combust. Sci. 34 (2008), pp. 725–754. doi: 10.1016/j.pecs.2008.05.002
  • S. Sukumaran and S. Kong, Modeling fuel NOx formation from combustion of biomass-derived producer gas in a large-scale burner, Combus. Flame 160 (2013), pp. 2159–2168. doi: 10.1016/j.combustflame.2013.04.020
  • S. Van Loo and J. Koppenjan, The Handbook of Biomass Combustion and Co-Firing, Earthscan, New York, 2008.
  • T. Klason and X. Bai, Computational study of the combustion process and NO formation in a small-scale wood pelletfurnace, Fuel 86 (2007), pp. 1465–1474. doi: 10.1016/j.fuel.2006.11.022
  • D. Veynante and L. Vervisch, Turbulent combusition modeling, Prog. Energ. Combust. Sci. 28 (2002), pp. 193–266. doi: 10.1016/S0360-1285(01)00017-X
  • M. Farokhi and M. Birouk, Application of Eddy dissipation concept for modeling biomass combustion – part 2: gas-phase combustion modeling of a small-scale fixed bed furnace. Energ. Fuel 30 (2016), pp. 10800–10808. doi: 10.1021/acs.energyfuels.6b01948
  • M. Farokhi, M. Birouk, and F. Tabet, A computational study of a small-scale biomass burner: The influence of chemistry, turbulence and combustion sub-models, Energ. Convers. Manage. 143 (2017), pp. 203–217. doi: 10.1016/j.enconman.2017.03.086
  • A. Rebola, P.J. Coelho, and M. Costa, Assessment of the performance of several turbulence and combustion models in the numerical simulation of a flameless combustor, Combust. Sci. Technol. 185 (2013), pp. 600–626. doi: 10.1080/00102202.2012.739222
  • A. Shiehnejadhesar, R. Mehrabian, R. Scharler, G.M. Goldin, and I. Obernberger, Development of a gas phase combustion model suitable for low and high turbulence conditions, Fuel 126 (2014), pp. 177–187. doi: 10.1016/j.fuel.2014.02.040
  • M. Farokhi and M. Birouk, Application of Eddy dissipation concept for modeling biomass combustion, part 1: assessment of model coefficients, Energ. Fuels 12 (2016), pp. 10789–10799. doi: 10.1021/acs.energyfuels.6b01947
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energ. Combust. Sci. 10 (1984), pp. 319–339. doi: 10.1016/0360-1285(84)90114-X
  • S. Zahirovic, R. Scharler, P. Kilpinen, and I. Obernberger, Validation of flow simulation and gas combustion sub-models for the CFD-based prediction of NOx formation in biomass grate furnaces, Combust. Theor. Model. 15 (2010), pp. 61–87. doi: 10.1080/13647830.2010.524312
  • B. Magnussen, On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow, 19th AIAA Aerospace Science Meeting, St. Louis, MO, 1981.
  • M. Farokhi and M. Birouk, A new EDC approach for modeling turbulence/chemistry interaction of the gas-phase of biomass combustion, Fuel 220 (2018), pp. 420–436. doi: 10.1016/j.fuel.2018.01.125
  • M. Buchmayr, J. Gruber, M. Hargassner, and C. Hochenauer, A computationally inexpensive CFD approach for small-scale biomass burners equipped with enhanced air staging, Energ. Convers. Manage. 115 (2016), pp. 32–42. doi: 10.1016/j.enconman.2016.02.038
  • B. Albrecht, S. Zahirovic, R. Bastiaans, J. Van Oijen, and L. de Goey, A premixed flamelet – PDF model for biomass combustion in a grate furnace, Energ. Fuels 22 (2008), pp. 1570–1580. doi: 10.1021/ef7007562
  • M. Buchmayr, J. Gruber, and M. Hargassner, Performance analysis of a steady flamelet model for the use in small-scale biomass combustion under extreme air-staged conditions. J Energ. Inst 91 (2018), pp. 534–591. doi: 10.1016/j.joei.2017.04.003
  • C. Bowman, R. Hanson, D. Davidson, W. Gardiner, J.V. Lissianski, G. Smith, D. Golden, M. Frenklach, and M. Goldenberg, GRI-Mech 2.11, [Online]. Available: http://www.me.berkeley.edu/gri_mech/.
  • M. Bui-Pham and K. Seshadri, Comparison between experimental measurements and numerical calculations of the structure of heptane-air diffusion flames, Combust. Sci. Technol. 79 (1991), pp. 293–310. doi: 10.1080/00102209108951771
  • M. Bugge, Ø. Skreiberg, N. Haugen, P. Carlsson, E. Houshfar, and T. Løvås, Numerical simulation of staged biomass grate fired combustion with an emphasis on NOx emissions, Energy Procedia 75 (2015), pp. 156–161. doi: 10.1016/j.egypro.2015.07.272
  • M. Karim and J. Naser, CFD modelling of combustion and associated emission of wet woody biomass in a 4 MW moving grate boiler, Fuel 222 (2018), pp. 656–674. doi: 10.1016/j.fuel.2018.02.195
  • N. Razmjoo, H. Sefidari, and M. Strand, Measurements of temperature and gas composition within the burning bed of wet woody residues in a 4MW moving grate boiler, Fuel Process. Technol. 152 (2016), pp. 438–445. doi: 10.1016/j.fuproc.2016.07.011
  • M. Karim and J. Naser, Numerical study of the ignition front propagation of different pelletised biomass in a packed bed furnace, Appl. Therm. Eng. 128 (2018), pp. 772–784. doi: 10.1016/j.applthermaleng.2017.09.061
  • M.R. Karim, A. Bhuiyan, and J. Naser, Effect of recycled flue gas ratios for pellet type biomass combustion in a packed bed furnace, Int. J. Heat Mass Tran. 120 (2018), pp. 1031–1043. doi: 10.1016/j.ijheatmasstransfer.2017.12.116
  • A. Parante, M. Malik, F. Contino, A. Cuoci, and B. Dally, Extension of the eddy dissipation concept for turbulent/chemistry interaction to MILD combusiton, Fuel 163 (2016), pp. 98–111. doi: 10.1016/j.fuel.2015.09.020
  • M. Lewandowski and I. Ertesvag, Analysis of the Eddy dissipation concept formulation for MILD combustion modelling, Fuel 224 (2018), pp. 687–700. doi: 10.1016/j.fuel.2018.03.110
  • R.S. Barlow, G.J. Fiechtner, C.D. Carter, and J.-Y. and Chen, Experiments on the scalar structure of turbulent CO/H2/N2 jet flames, Combust Flame 120 (2000), pp. 549–569. doi: 10.1016/S0010-2180(99)00126-1
  • M. F. Modest, Radiative Heat Transfer, Academic press, New yourk, 2003.
  • N. Selçuk and N. Kayakol, Evaluation of descrete ordinates method for radiative transfer in rectangular furnaces, Int. J. Heat Mass Transfer. 40 (1997), pp. 213–222. doi: 10.1016/0017-9310(96)00139-1
  • I. Gran, B. Magnussen, A numerical study of a Bluff-body stabilized diffusion flame. Part 2. influence of combustion modeling and finite-rate chemistry. Combus. Sci. Technol. 119 (1996), pp. 191–217. doi: 10.1080/00102209608951999
  • A. De, E. Oldenhof, P. Sathiah, and D. Roekaerts, Numerical simulation of Delft-jet-in-hot-coflow (DJHC) flame using eddy dissipation concept model for turbulent-chemistry interaction, Flow Turbulent Combus. 87 (2011), pp. 537–567. doi: 10.1007/s10494-011-9337-0
  • B. Lilleberg, D. Christ, and I. Ertesvag, Numerical simulation with an extinction database for use with the Eddy dissipation concept for turbulent combustion, Flow Turbulence Combus. 91 (2013), pp. 319–346. doi: 10.1007/s10494-013-9463-y
  • R. Rydén, L. Eriksson, and S. Olovsson, Large Eddy simulation of Bluff body stabilised turbulent premixed flames, ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition, Cincinnati, Ohio, USA, 1993.
  • E. Giacomazzi, C. Bruno, and B. Favini, Fractal modelling of turbulent combustion, Combust. Theor. Model. 4 (2000), pp. 391–412. doi: 10.1088/1364-7830/4/4/302
  • O. Gulder, Turbulent premixed combustion modelling using fractal geometry, Twenty-Third Symposium (International) on combustion/The Combustion Institute, 1990.
  • I. Gran, M. Melaaen, and B. Magnussen, Numerical simulation of local extinction effects in turbulent combustor flows of methane and air, Twenty-Fifth Symposium (International) on CombustionfFhe Combustion Institute, 1994.
  • N. Peters, Laminar flamelet concepts in turbulent combustion, 21 Symposium (international) on combustion/ the combustion institute, 1986.
  • H. Magel, U. Schnell, and K. Hein, Simulation of detailed chemistry in a turbulent combustor flow, Symp. (Int.) Combus. 26 (1996), pp. 67–74. doi: 10.1016/S0082-0784(96)80201-3
  • B. Magnussen, Modeling of NOx and soot formation by the Eddy dissipation concept, 1st topicoriented Technical Meeting, Int. flame research Foundation, Amsterdam, Holland, 1989.
  • R. Bilger, S. Starner, and R. Kee, On reduced mechanisms for methane/air combustion in nonpremixed flames, Combus. Flame 80 (1990), pp. 135–149. doi: 10.1016/0010-2180(90)90122-8
  • F. Tabet, B. Sarh, M. Birouk, and I. Gokalp, The near-field region behaviour of hydrogen-air turbulent non-premixed flame, Heat Mass Transfer 48 (2012), pp. 359–371. doi: 10.1007/s00231-011-0889-2
  • T. Echekki, E. Mastorakos, Turbulent Combustion Modeling, Advaces, New Trends and Perspectives, Springer, London New York, 2011.
  • M. Farokhi and M. Birouk, Modeling of the gas-phase combustion of a grate-firing biomass furnace using an extended approach of Eddy dissipation Concept, Fuel 227 (2018), pp. 412–423. doi: 10.1016/j.fuel.2018.04.102
  • R. Mehrabian, R. Scharler, A. Weissinger, and I. Obernberger, Optimisation of biomass grate furnaces with a new 3D packed bed combustion model – on examle of a small-scale underfeed stocker furnace, 18th European Biomass Conference and Exhibition, 3–7 May 2010, Lyon, France, 2010.
  • R. Mehrabian, Writer, CFD simulation of the thermal conversion of solid biomass in packed bed furnaces. [Performance], PhD thesis, The Institute for Process and Particle Engineering Graz University of Technology, 2013.
  • B. Peters, Measurements and application of a discrete particle model (DPM) to simulate combustion of a packed bed of individual fuel particles, Combus. Flame 131 (2002), pp. 132–146. doi: 10.1016/S0010-2180(02)00393-0
  • M.A. Gómez, J. Porteiro, D. de la Cuesta, D. Patiño, and J. Míguez, Numerical simulation of the combustion process of a pellet-drop-feed boiler, Fuel 184 (2016), pp. 987–999. doi: 10.1016/j.fuel.2015.11.082
  • ANSYS., ANSYS Fluent Theory Guide, Release 15.0, Ansys.
  • R.S. Miller, K. Harstad, and J. Bellan, Evaluation of equilibrium and non-equilibrium evaporation models for many droplet gas-liquid flow simulations, Int. J. Multiphase Flow 24 (1998), pp. 1025–1055. doi: 10.1016/S0301-9322(98)00028-7
  • E. Girgis and W.L.H. Hallett, Wood combustion in an overfeed packed bed, including detailed measurements within the bed, Energ. Fuels 24 (2010), pp. 1584–1591. doi: 10.1021/ef901206d
  • H. Khodaei, Y. Al-Abdeli, F. Guzzomi, and G. Yeoh, An overview of processes and considerations in the modeling of fixed-bed biomass combustion, Energy 88 (2015), pp. 946–972. doi: 10.1016/j.energy.2015.05.099
  • H. Thunman, F. Niklasson, F. Johnsson, and B. Leckner, Composition of volatile gases and thermochemical properties of wood for modeling of fixed or fluidized beds, Energ. Fuels 15 (2001), pp. 1488–1497. doi: 10.1021/ef010097q
  • K.M. Bryden and K.W. Ragland, Numerical modeling of a deep, fixed bed combustor, Energ. Fuels 10 (1996), pp. 269–275. doi: 10.1021/ef950193p
  • F. Tabet, V. Fichet, and P. Plion, A comprehensive CFD based model for domestic biomass heating systems, J. Energ. Inst. 89 (2016), pp. 199–214. doi: 10.1016/j.joei.2015.02.003
  • H. Wiinikka, Writer, High Temperature Aerosol Formation and Emission Minimisation during Combustion of Wood Pellets. [Performance]. Ph.d. thesis, Luleå University of Technology, 2005.
  • S. Patronelli, M. Antonelli, L. Tognotti, and C. Galletti, Combustion of wood-chips in a small-scale fixed-bed boiler – validation of the numerical model through in-flame measurements, Fuel 221 (2018), pp. 128–137. doi: 10.1016/j.fuel.2018.02.083
  • R. Barlow and J. Frank, Effect of turbulence on species mass fractions in methane/air jet flames, 27th Symposium (International) on Combustion, The combustion institude, 1998.
  • R. Barlow and J. Frank, SandiaPilotDoc21.pdf, [Online]. Available: http://www.sandia.gov/TNF/DataArch/FlameD.html.
  • T. Klason, X. Bai, M. Bahador, T. Nilsson, and B. Sundén, Investigation of radiative heat transfer in fixed bed biomass furnaces, Fuel 87 (2008), pp. 2141–2153.
  • S. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabuilation, Combus. Theor. Model. 1 (1997), pp. 41–63. doi: 10.1080/713665229
  • G. Smith, D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C. Bowman, R. Hanson, S. Song, W. Gardiner, V. Lissianski, and Z. Qin, GRI 3.0 Mechanism, [Online]. Available: www.me.berkeley.edu/gri_mech.
  • W. Jones and R. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combust. Flame 73 (1988), pp. 233–249. doi: 10.1016/0010-2180(88)90021-1
  • A. L. Sullivan and R. Ball, Thermal decomposition and combustion chemistry of cellulosic biomass, Atmos. Environ. 47 (2012), pp. 133–141. doi: 10.1016/j.atmosenv.2011.11.022
  • E. Ranzi, A. Cuoci, T. Faravelli, A. Frassoldati, G. Migliavacca, S. Pierucci, and S. Sommariva, Chemical kinetics of biomass pyrolysis, Energ. Fuels 22 (2008), pp. 4292–4300. doi: 10.1021/ef800551t
  • M. Corbetta, A. Frassoldati, H. Bennadji, K. Smith, M.J. Serapiglia, G. Gauthier, T. Melkior, E. Ranzi, and E.M. Fisher, Pyrolysis of centimeter-scale woody biomass particles: kinetic modeling and experimental validation, Energ. Fuels 28 (2014), pp. 3884–3898. doi: 10.1021/ef500525v
  • S.N. Labratories, Sandia/TUD Piloted CH4/AIR jet flames, Sandia National Labratories, 2003.
  • C. Schneidera, A. Dreizlera, J. Janickaa, and E. Hasselb, Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames, Combus. Flame 135 (2003), pp. 185–190. doi: 10.1016/S0010-2180(03)00150-0
  • M. Ma and C. Devaud, A Conditional Moment Closure (CMC) formulation including differential diffusion applied to a non-premixed hydrogen-air flame, Combus. Flame 162 (2015), pp. 144–158. doi: 10.1016/j.combustflame.2014.07.008
  • J. Labahn, I. Stanković, C. Devaud, and B. Merci, Comparative study between Conditional Moment Closure (CMC) and Conditional Source-term Estimation (CSE) applied to piloted jet flames, Combust. Flame 181 (2017), pp. 172–187. doi: 10.1016/j.combustflame.2017.03.022
  • A. Frassoldati, P. Sharma, A. Cuoci, T. Faravelli, and E. Ranzi, Kinetic and fluid dynamics modeling of methane/hydrogen jet flames in diluted coflow, Appl Therm. Eng. 30 (2010), pp. 376–383. doi: 10.1016/j.applthermaleng.2009.10.001
  • B. Merci and E. Dick, Influence of computational aspects on simulations of a turbulent jet diffusion flame, Int. J. Numer. Methods Heat Fluid Flow 13 (2003), pp. 887–898. doi: 10.1108/09615530310502082
  • M. Evans, P. Medwell, and Z. Tian, Modeling lifted jet flames in a heated coflow using optimized eddy dissipation concept model, Combus. Sci. Technol. 187 (2015), pp. 1093–1109. doi: 10.1080/00102202.2014.1002836
  • G. Stubenberger, R. Scharler, S. Zahirovíc, and I. Obernberger, Experimental investigation of nitrogen species release of different solid biomass fuels as a basis for release models, Fuel 87 (2008), pp. 793–806. doi: 10.1016/j.fuel.2007.05.034

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.