250
Views
3
CrossRef citations to date
0
Altmetric
Articles

A normalised residence time transport equation for the numerical simulation of combustion with high-temperature air

, ORCID Icon & ORCID Icon
Pages 821-853 | Received 03 Oct 2018, Accepted 26 Feb 2019, Published online: 21 Apr 2019

References

  • S. Menon and C. Fureby, Computational combustion, in Encyclopedia of Aerospace Engineering, R. Blockley and W. Shyy, eds., Wiley, 2010
  • B.B. Dally, A.N. Karpetis and R.S. Barlow, Structure of turbulent non-premixed flames in a diluted hot coflow, Proc. Combust. Inst. 29 (2002), pp. 1147–1154. doi: 10.1016/S1540-7489(02)80145-6
  • R. Cabra, T. Myhrvold, J.Y. Chen and R.W. Dibble, Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow, Proc. Combust. Inst. 29 (2002), pp. 1881–1888. doi: 10.1016/S1540-7489(02)80228-0
  • R. Cabra, J.Y. Chen, R.W. Dibble, A.N. Karpetis and R.S. Barlow, Lifted methane air jet flames in a vitiated coflow, Combust. Flame 143 (2005), pp. 491–506. doi: 10.1016/j.combustflame.2005.08.019
  • Y.B. Zel'dovich, G.I. Barenblatt, V.B. Librovich, and G.M. Makhviladze, Mathematical theory of combustion and explosions, Plenum Publishing Corporation, San Diego, CA (USA), 1985.
  • C.N. Markides and E. Mastorakos, An experimental study of hydrogen autoignition in a turbulent co-flow of heated air, Proc. Combust. Inst. 30 (2005), pp. 883–891. doi: 10.1016/j.proci.2004.08.024
  • E. Mastorakos, Ignition of turbulent non-premixed flames, Prog. Energy Combust. Sci. 35 (2009), pp. 57–97. doi: 10.1016/j.pecs.2008.07.002
  • E. Oldenhof, M.J. Tummers, E.H. Van Veen and D.J.E.M. Roekaerts, Ignition kernel formation and lift-off behaviour of jet-in-hot-coflow flames, Combust. Flame 157 (2010), pp. 1167–1178. doi: 10.1016/j.combustflame.2010.01.002
  • S. Lamige, J. Min, C. Galizzi, F. André, F. Baillot, D. Escudié and K.M. Lyons, On preheating and dilution effects in non-premixed jet flame stabilization, Combust. Flame 160 (2013), pp. 1102–1111. doi: 10.1016/j.combustflame.2013.01.026
  • L. Gomet, V. Robin and A. Mura, A multiple-inlet mixture fraction model for non-premixed combustion, Combust. Flame 162 (2015), pp. 668–687. doi: 10.1016/j.combustflame.2014.08.006
  • K.Q.N. Kha, C. Losier, V. Robin, A. Mura and M. Champion, Relevance of two basic turbulent premixed combustion models for the numerical simulations of V-shaped flames, Combust. Sci. Tech. 188 (2016), pp. 1878–1903. doi: 10.1080/00102202.2016.1211866
  • L. Gomet, V. Robin and A. Mura, Influence of residence and scalar mixing time scales in non-premixed combustion in supersonic turbulent flows, Combust. Sci. Tech. 184 (2012), pp. 1471–1501. doi: 10.1080/00102202.2012.690259
  • R. Mouangue, M. Obounou, L. Gomet and A. Mura, Lagrangian intermittent modelling of a turbulent lifted methane-air jet flame stabilized in a vitiated air co-flow, Flow, Turb. Combust. 92 (2014), pp. 731–765. doi: 10.1007/s10494-013-9512-6
  • F. Ghirelli and B. Leckner, Transport equation for the local residence time of a fluid, Chem. Eng. Sci. 59 (2004), pp. 513–523. doi: 10.1016/j.ces.2003.10.013
  • D. Shin, R.D. Sandberg and E.S. Richardson, Self-similarity of fluid residence time statistics in a turbulent round jet, J. Fluid Mech. 823 (2017), pp. 1–25. doi: 10.1017/jfm.2017.304
  • D.G. Goodwin, H.K. Moffat and R.L. Speth, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, http://www.cantera.org (2017). Version 2.3.0
  • S. Serra, V. Robin, A. Mura and M. Champion, Density variations effects in turbulent diffusion flames: modeling of unresolved fluxes, Combust. Sci. Tech. 186 (2014), pp. 1370–1391. doi: 10.1080/00102202.2014.934605
  • Code_Saturne user guides, http://code-saturne.org/cms/documentation/guides (2016). Version 3.2.1
  • O. Schulz, T. Jaravel, T. Poinsot, B. Cuenot and N. Noiray, A criterion to distinguish autoignition and propagation applied to a lifed methane-air jet flame, Proc. Combust. Inst. 36 (2017), pp. 1637–1644. doi: 10.1016/j.proci.2016.08.022
  • G. Smith, D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W. Gardiner, V. Lissianski and Q. Z., http://combustion.berkeley.edu/gri-mech/
  • I.S. Kim and E. Mastorakos, Simulations of turbulent lifted jet flames with two-dimensional conditional moment closure, Proc. Combust. Inst. 30 (2005), pp. 911–918. doi: 10.1016/j.proci.2004.08.039
  • A. Mura and F.X. Demoulin, Lagrangian intermittent modelling of turbulent lifted flames, Combust. Theory Modell. 11 (2007), pp. 223–253. doi: 10.1080/13647830600967071
  • L. Vervisch, P. Domingo, M. Rullaud and R. Hauguel, Three facets of turbulent combustion modeling: DNS of premixed V-flame, LES of lifted jet-flame, RANS of non premixed jet-flame, J. Turbul. 5 (2004), pp. 1–36. doi: 10.1088/1468-5248/5/1/004
  • K.Q.N. Kha, V. Robin, A. Mura and M. Champion, Implications of laminar flame finite thickness on the structure of turbulent premixed flames, J. Fluid Mech. 787 (2016), pp. 116–147. doi: 10.1017/jfm.2015.660
  • K.N.C. Bray and J.B. Moss, A unified statistical model of the premixed turbulent flame, Acta. Astronaut. 4 (1977), pp. 291–319. doi: 10.1016/0094-5765(77)90053-4
  • A. Mura, V. Robin, K.Q.N. Kha and M. Champion, A layered description of a premixed flame stabilized in stagnating turbulence, Combust. Sci. Technol. 188 (2016), pp. 1592–1618. doi: 10.1080/00102202.2016.1195822
  • A. Mura and R. Borghi, Introducing a new partial PDF approach for turbulent combustion modeling, Combust. Flame 136 (2004), pp. 377–382. doi: 10.1016/j.combustflame.2003.10.004
  • G. Ribert, K. Wang and L. Vervisch, A multi-zone self similar chemistry tabulation with application to auto-ignition including cool-flames effects, Fuel 91 (2012), pp. 87–92. doi: 10.1016/j.fuel.2011.07.036
  • M. Sandberg, What is ventilation efficiency?, Buil. Environ. 16 (1981), pp. 123–135. doi: 10.1016/0360-1323(81)90028-7
  • J.N. Balo and P.L. Cloirec, Validating a prediction method of mean residence time spatial distributions, AIChE J. 46 (2000), pp. 675–683. doi: 10.1002/aic.690460403
  • C. Strozzi, J. Sotton, A. Mura and M. Bellenoue, Experimental and numerical study of the influence of temperature heterogeneities on self-ignition process of methane-air mixtures in a rapid compression machine, Combust. Sci. Technol. 180 (2008), pp. 1829–1857. doi: 10.1080/00102200802260656
  • C. Strozzi, A. Mura, J. Sotton and M. Bellenoue, Experimental analysis of propagation regimes during the autoignition of a fully premixed methaneair mixture in the presence of temperature inhomogeneities, Combust. Flame 159 (2012), pp. 3323–3341. doi: 10.1016/j.combustflame.2012.06.011
  • E. Mastorakos, T.A. Baritaud and T.J. Poinsot, Numerical simulations of autoignition in turbulent mixing flows, Combust. Flame 109 (1997), pp. 198–223. doi: 10.1016/S0010-2180(96)00149-6
  • A. Bhagatwala, J.H. Chen and T. Lu, Direct numerical simulations of HCCI/SACI with ethanol, Combust. Flame 161 (2014), pp. 1826–1841. doi: 10.1016/j.combustflame.2013.12.027
  • R. Vicquelin, Tabulation de la cintique chimique pour la modlisation et la simulation de la combustion turbulente, Ph.D. diss., Ecole Centrale Paris, 2010
  • M.Ó. Conaire, H.J. Curran, J.M. Simmie, W.J. Pitz and C.K. Westbrook, A comprehensive modeling study of hydrogen oxidation, Int. J. Chem. Kinet. 36 (2004), pp. 603–622. doi: 10.1002/kin.20036
  • R. Mercier, T. Schmitt, D. Veynante and B. Fiorina, The influence of combustion sgs submodels on the resolved flame propagation. application to the LES of the cambridge stratified flames, Proc. Combust. Inst. 35 (2015), pp. 1259–1267. doi: 10.1016/j.proci.2014.06.068
  • C.A. Catlin and R.P. Lindstedt, Premixed turbulent burning velocities derived from mixing controlled reaction models with cold front quenching, Combust. Flame 85 (1991), pp. 427–439. doi: 10.1016/0010-2180(91)90145-2
  • V.A. Sabelnikov, C. Corvellec and P. Bruel, Analysis of the influence of cold front quenching on the turbulent burning velocity associated with an eddy-break-up model., Combust. Flame, 113 (1998), pp. 492–497. doi: 10.1016/S0010-2180(97)00234-4
  • D.H. Shin, E.S. Richardson, V. Aparece-Scutariu, Y. Minamoto and J.H. Chen, Fluid age-based analysis of a lifted turbulent DME jet flame DNS, Proc. Combust. Inst. 37 (2019), pp. 2215–2222. doi: 10.1016/j.proci.2018.06.126

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.