676
Views
5
CrossRef citations to date
0
Altmetric
Articles

Computational investigations of the coupling between transient flame dynamics and thermo-acoustic instability in a self-excited resonance combustor

, &
Pages 854-884 | Received 10 Apr 2018, Accepted 13 Mar 2019, Published online: 02 Apr 2019

References

  • F.E.C. Culick and V. Yang, Overview of combustion instabilities in liquid-propellant rocket engines, in Liquid Rocket Engine Combustion Instability. Progress in Astronautics and Aeronautics. No.169. American Institute of Aeonautics and Astrophysics, Washington, DC, 1995. pp. 3–37.
  • D.E. Rogers, A mechanism for high-frequency oscillation in ramjet combustors and afterburners, J. Jet Propulsion 26 (1956), pp. 456–462. doi: 10.2514/8.7049
  • D.A. Smith and E.E. Zukoski, Combustion instability sustained by unsteady vortex combustion, in 21st Joint Propulsion Conference. AIAA 1985-1248, Monterey, California, USA, 1985
  • U. Hegde, D. Reuter, B. Daniel and B. Zinn, Flame driving of longitudinal instabilities in dump type ramjet combustors, Combustion Sci. Technol. 55 (1987), pp. 125–138. doi: 10.1080/00102208708947075
  • J. Cohen and T. Anderson, Experimental investigation of near-blowout instabilities in a lean, premixed step combustor, in 34th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meeting. AIAA 1996-819, Reno, Nevada, USA, 1996
  • D.W. Kendrick, An experimental and numerical investigation into reacting vortex structures associated with unstable combustion, Ph.D. diss., California Institute of Technology, 1995
  • T.J. Poinsot, A.C. Trouve, D.P. Veynante, S.M. Candel and E.J. Esposito, Vortex-driven acoustically coupled combustion instabilities, J. Fluid Mech. 177 (1987), pp. 265–292. doi: 10.1017/S0022112087000958
  • K. Schadow, E. Gutmark, T. Parr, D. Parr, K. Wilson and J. Crump, Large-scale coherent structures as drivers of combustion instability, Combustion Sci. Technol. 64 (1989), pp. 167–186. doi: 10.1080/00102208908924029
  • H.Y. Ken, A. Trouvé and J.W. Daily, Low-frequency pressure oscillations in a model ramjet combustor, J. Fluid Mech. 232 (1991), pp. 47–72. doi: 10.1017/S0022112091003622
  • K. Venkataraman, L. Preston, D. Simons, B. Lee, J. Lee and D. Santavicca, Mechanism of combustion instability in a lean premixed dump combustor, J. Propulsion Power 15 (1999), pp. 909–918. doi: 10.2514/2.5515
  • D. Reuter, U. Hegde and B. Zinn, Flowfield measurements in an unstable ramjet burner, J. Propulsion Power 6 (1990), pp. 680–685. doi: 10.2514/3.23272
  • G.A. Richards and M.C. Janus, Characterization of oscillations during premix gas turbine combustion, in ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1997, pp. V002T06A033–V002T06A033
  • D.L. Straub and G.A. Richards, Effect of fuel nozzle configuration on premix combustion dynamics, in ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998, pp. V003T06A044–V003T06A044
  • J. Broda, S. Seo, R. Santoro, G. Shirhattikar and V.. Yang, An experimental study of combustion dynamics of a premixed swirl injector, in Symposium (International) on Combustion, Vol. 27. Elsevier, 1998, pp. 1849–1856
  • W. Anderson, K. Miller, H. Ryan, S. Pal, R. Santoro and J. Dressler, Effects of periodic atomization on combustion instability in liquid-fueled propulsion systems, J. Propulsion. Power 14 (1998), pp. 818–825. doi: 10.2514/2.5345
  • T. Conrad, E. Lubarsky, A. Bibik, D. Shcherbik and B. Zinn, Control of instabilities in liquid fueled combustor by modification of the reaction zone using smart fuel injector, in 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 2004, p. 4029
  • K.J. Miller, Experimental study of longitudinal instabilities in a single element rocket combustor, Master's thesis, Purdue University, 2005
  • J.C. Sisco, Measurement and analysis of an unstable model rocket combustor, Ph.D. diss., Purdue University, 2007
  • Y.C. Yu, J.C. Sisco, S. Rosen, A. Madhav and W.E. Anderson, Spontaneous longitudinal combustion instability in a continuously variable resonance combustor, J. Propulsion Power 28 (2012), pp. 876–887. doi: 10.2514/1.B34308
  • J.S. Hardi, W.Z. Hallum, C. Huang and W.E. Anderson, Approaches for comparing numerical simulation of combustion instability and flame imaging, J. Propulsion Power 32 (2016), pp. 279–294. doi: 10.2514/1.B35780
  • C.E. Smith and A.D. Leonard, CFD modeling of combustion instability in premixed axisymmetric combustors, in ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition. ASME 97-GT-305, Orlando, Florida, USA, June 2-5, 1997
  • S.J. Brookes, R.S. Cant, I.D. Dupere and A.P. Dowling, Computational modelling of self-excited combustion instabilities, in ASME Turbo Expo 2000: Power for Land, Sea, and Air. ASME 2000-GT-0104, Munich, Germany, May 8-11, 2000
  • P. Langhorne, Reheat buzz: An acoustically coupled combustion instability. part 1. experiment, J. Fluid Mech. 193 (1988), pp. 417–443. doi: 10.1017/S0022112088002204
  • S. Menon and W.H. Jou, Large-eddy simulations of combustion instability in an axisymmetric ramjet combustor, Combustion Sci. Technol. 75 (1991), pp. 53–72. doi: 10.1080/00102209108924078
  • O. Colin, F. Ducros, D. Veynante and T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12 (2000), pp. 1843–1863. doi: 10.1063/1.870436
  • C. Angelberger, D. Veynante and F. Egolfopoulos, LES of chemical and acoustic forcing of a premixed dump combustor, Flow, Turbulence Combustion 65 (2000), pp. 205–222. doi: 10.1023/A:1011477030619
  • C.E. Martin, L. Benoit, Y. Sommerer, F. Nicoud and T. Poinsot, Large-eddy simulation and acoustic analysis of a swirled staged turbulent combustor, AIAA J. 44 (2006), pp. 741–750. doi: 10.2514/1.14689
  • B. Franzelli, E. Riber, L.Y. Gicquel and T. Poinsot, Large-eddy simulation of combustion instabilities in a lean partially premixed swirled flame, Combust. Flame 159 (2012), pp. 621–637. doi: 10.1016/j.combustflame.2011.08.004
  • P. Schmitt, T. Poinsot, B. Schuermans and K.P. Geigle, Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner, J. Fluid Mech. 570 (2007), pp. 17–46. doi: 10.1017/S0022112006003156
  • K. Dobbeling, Novel technologies for natural gas combustion in turbine systems, in Eurogas 99. Ruhr-Universitat Bochum, May 25-27, 1999
  • R. Garby, L. Selle and T. Poinsot, Large-eddy simulation of combustion instabilities in a variable-length combustor, C. R. Mécanique 341 (2013), pp. 220–229. doi: 10.1016/j.crme.2012.10.020
  • B. Franzelli, E. Riber, M. Sanjosé and T. Poinsot, A two-step chemical scheme for kerosene–air premixed flames, Combust. Flame 157 (2010), pp. 1364–1373. doi: 10.1016/j.combustflame.2010.03.014
  • M.E. Harvazinski, Modeling self-excited combustion instabilities using a combination of two-and three-dimensional simulations, Ph.D. diss., Purdue University, 2012
  • W. Jones and R. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combust. Flame 73 (1988), pp. 233–249. doi: 10.1016/0010-2180(88)90021-1
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, RT Edwards Inc., Philadelphia, PA, 2005.
  • P. McMurtry, S. Menon and A. Kerstein, Linear eddy modeling of turbulent combustion, Energy Fuels7 (1993), pp. 817–826. doi: 10.1021/ef00042a018
  • S. Srinivasan, R. Ranjan and S. Menon, Flame dynamics during combustion instability in a high-pressure, shear-coaxial injector combustor, Flow, Turbulence Combust. 94 (2015), pp. 237–262. doi: 10.1007/s10494-014-9569-x
  • P. Tudisco, R. Ranjan, S. Menon, S. Jaensch and W. Polifke, Application of the time-domain impedance boundary condition to large-eddy simulation of combustion instability in a shear-coaxial high pressure combustor, Flow, Turbulence Combust. 99 (2017), pp. 185–207. doi: 10.1007/s10494-017-9804-3
  • M.E. Harvazinski, C. Huang, V. Sankaran, T.W. Feldman, W.E. Anderson, C.L. Merkle and D.G. Talley, Coupling between hydrodynamics, acoustics, and heat release in a self-excited unstable combustor, Phys. Fluids 27 (2015), pp. 045102. doi: 10.1063/1.4916673
  • S.V. Sardeshmukh, S.D. Heister and W.E. Anderson, Prediction of combustion instability with detailed chemical kinetics, in 53rd AIAA Aerospace Sciences Meeting, AIAA Scitech Forum. AIAA 2015-1826, Kissimmee, Florida, USA, 2015
  • S. Matsuyama, D. Hori, T. Shimizu, S. Tachibana, S. Yoshida and Y. Mizobuchi, Large-eddy simulation of high-frequency combustion instability in a single-element atmospheric combustor, J. Propulsion Power 32 (2016), pp. 628–645. doi: 10.2514/1.B35670
  • T. Shimizu, S. Tachibana, S. Yoshida, D. Hori, S. Matsuyama and Y. Mizobuchi, Intense tangential pressure oscillations inside a cylindrical chamber, AIAA J. 49 (2011), pp. 2272–2281. doi: 10.2514/1.J051047
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10 (1984), pp. 319–339. doi: 10.1016/0360-1285(84)90114-X
  • C.D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech. 504 (2004), pp. 73–97. doi: 10.1017/S0022112004008213
  • T.M. Nguyen and W.A. Sirignano, The impacts of three flamelet burning regimes in nonlinear combustion dynamics, Combust. Flame 195 (2018), pp. 170–182. doi: 10.1016/j.combustflame.2018.03.031
  • Y.C. Yu, Experimental and analytical investigations of longitudinal combustion instability in a continuously variable resonance combustor (CVRC), Ph.D. diss., Purdue University, 2009
  • R.O. Fox, Computational Models for Turbulent Reacting Flows, Cambridge Univ. Press, Cambridge, UK, 2003.
  • D. Li, G. Xia, V. Sankaran and C.L. Merkle, Computational framework for complex fluid physics applications, in Computational Fluid Dynamics 2004, Springer, 2006, pp. 619–624
  • C. Lian, G. Xia and C.L. Merkle, Solution-limited time stepping to enhance reliability in CFD applications, J. Comput. Phys. 228 (2009), pp. 4836–4857. doi: 10.1016/j.jcp.2009.03.040
  • C. Lian, G. Xia and C.L. Merkle, Impact of source terms on reliability of CFD algorithms, Comput. Fluids 39 (2010), pp. 1909–1922. doi: 10.1016/j.compfluid.2010.06.021
  • M. Strelets, Detached eddy simulation of massively separated flows, in 39th Aerospace sciences meeting and exhibit. AIAA 2001-879, Reno, Nevada, USA, 2001
  • D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, La Canada, California, 1998.
  • D.C. Wilcox, Formulation of the k-ω turbulence model revisited, AIAA J. 46 (2008), pp. 2823–2838. doi: 10.2514/1.36541
  • A. Travin, M. Shur, M. Strelets and P. Spalart, Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows, in Advances in LES of complex flows, Springer, 2002, pp. 239–254
  • Available at https://webbook.nist.gov/cgi.
  • J.C. Oefelein and V. Yang, Modeling high-pressure mixing and combustion processes in liquid rocket engines, J. Propulsion Power 14 (1998), pp. 843–857. doi: 10.2514/2.5349
  • H. Pitsch, Flamemaster: A C++ computer program for 0D combustion and 1D laminar flame calculations, Available at http://web.stanford.edu/group/pitsch/FlameMaster.htm, Version 3.3.9 (1998)
  • M. Frenklach, H. Wang, C. Yu, M. Goldenberg, C. Bowman, R. Hanson, D. Davidson, E. Chang, G. Smith and D. Golden, GRI-Mech-1.2, An optimized detailed chemical reaction mechanism for methane combustion, Gas Research Institute (1995)
  • C. Han and H. Wang, A comparison of different approaches to integrate flamelet tables with presumed-shape PDF in flamelet models for turbulent flames, Combust. Theory Model. 21 (2017), pp. 603–629. doi: 10.1080/13647830.2017.1279347
  • M. Ihme, C.M. Cha and H. Pitsch, Prediction of local extinction and re-ignition effects in non-premixed turbulent combustion using a flamelet/progress variable approach, Proc. Combust. Inst. 30 (2005), pp. 793–800. doi: 10.1016/j.proci.2004.08.260
  • M. Ihme and H. Pitsch, Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 1. A priori study and presumed PDF closure, Combust. Flame 155 (2008), pp. 70–89. doi: 10.1016/j.combustflame.2008.04.001
  • M. Ihme and H. Pitsch, Prediction of extinction and reignition in nonpremixed turbulent flames using a flamelet/progress variable model: 2. Application in LES of sandia flames D and E, Combust. Flame155 (2008), pp. 90–107. doi: 10.1016/j.combustflame.2008.04.015
  • A. Saghafian, V.E. Terrapon and H. Pitsch, An efficient flamelet-based combustion model for compressible flows, Combust. Flame. 162 (2015), pp. 652–667. doi: 10.1016/j.combustflame.2014.08.007
  • T. Pant, C. Han and H. Wang, Examination of errors arising from flamelet table integration in flamelet modeling of a turbulent non-premixed jet flame and a self-excited resonance rocket combustor, Combustion Theory and Modelling (Under review, 2018)
  • S. Venkateswaran and C. Merkle, Dual time-stepping and preconditioning for unsteady computations, in 33rd Aerospace Sciences Meeting and Exhibit. AIAA 1995-78, Reno, Nevada, USA, 1995
  • X. Zeng, Convergence and robustness issues in computational fluids, Ph.D. diss., University of Tennessee, 2004
  • D. Kapilavai, Unsteady computational analysis of shrouded plug nozzle flows and reacting impinging jets, Ph.D. diss., Purdue University, 2011
  • M.E. Harvazinski, D.G. Talley and V. Sankaran, Comparison of laminar and linear eddy model closures for combustion instability simulations, in 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum. AIAA 2015-3842, Orlando, Florida, USA, July 27-29, 2015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.