327
Views
7
CrossRef citations to date
0
Altmetric
Articles

An exponential distribution scheme for the two-way coupling in transported PDF method for dilute spray combustion

, , ORCID Icon &
Pages 105-128 | Received 31 Mar 2019, Accepted 09 Aug 2019, Published online: 31 Aug 2019

References

  • S. Elghobashi and G.C. Truesdell, On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: turbulence modification, Phys. Fluids A 5 (1993), pp. 1790–1801. doi: 10.1063/1.858854
  • G.M. Faeth, Mixing, transport and combustion in sprays, Prog. Energy Combust. Sci. 13 (1987), pp. 293–345. doi: 10.1016/0360-1285(87)90002-5
  • P. Jenny, D. Roekaerts and N. Beishuizen, Modeling of turbulent dilute spray combustion, Prog. Energy Combust. Sci. 38 (2012), pp. 846–887. doi: 10.1016/j.pecs.2012.07.001
  • A.R. Masri, Turbulent combustion of sprays: from dilute to dense. Combust. Sci. Technol. 188 (2016), pp. 1619–1639. doi: 10.1080/00102202.2016.1198788
  • H.-W. Ge and E. Gutheil, Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling, Combust. Flame 153 (2008), pp. 173–185. doi: 10.1016/j.combustflame.2007.10.019
  • C. Heye, V. Raman and A.R. Masri, LES/probability density function approach for the simulation of an ethanol spray flame, Proc. Combust. Inst. 34 (2013), pp. 1633–1641. doi: 10.1016/j.proci.2012.06.107
  • W. O’Loughlin and A.R. Masri, A new burner for studying auto-ignition in turbulent dilute sprays, Combust. Flame 158 (2011), pp. 1577–1590. doi: 10.1016/j.combustflame.2010.12.021
  • J.D. Gounder, A. Kourmatzis and A.R. Masri, Turbulent piloted dilute spray flames: flow fields and droplet dynamics, Combust. Flame 159 (2012), pp. 3372–3397. doi: 10.1016/j.combustflame.2012.07.014
  • S. De and S.H. Kim, Large eddy simulation of dilute reacting sprays: droplet evaporation and scalar mixing, Combust. Flame 160 (2013), pp. 2048–2066. doi: 10.1016/j.combustflame.2013.04.024
  • S. Ukai, A. Kronenburg and O.T. Stein, Large eddy simulation of dilute acetone spray flames using CMC coupled with tabulated chemistry, Proc. Combust. Inst. 35 (2015), pp. 1667–1674. doi: 10.1016/j.proci.2014.06.013
  • R.O. Fox, Large-eddy-simulation tools for multiphase flows, Annu. Rev. Fluid Mech. 44 (2012), pp. 47–76. doi: 10.1146/annurev-fluid-120710-101118
  • W.P. Jones and D.H. Sheen, A probability density function method for modelling liquid fuel sprays, Flow Turbul. Combust. 63 (2000), pp. 379–394. doi: 10.1023/A:1009984220148
  • H.W. Ge, I. Düwel, H. Kronemayer, R.W. Dibble, E. Gutheil, C. Schulz and J. Wolfrum, Laser-based experimental and Monte Carlo PDF numerical investigation of an ethanol/air spray flame, Combust. Sci. Technol. 180 (2008), pp. 1529–1547. doi: 10.1080/00102200802125693
  • C. Heye, V. Raman and A.R. Masri, Influence of spray/combustion interactions on auto-ignition of methanol spray flames, Proc. Combust. Inst. 35 (2015), pp. 1639–1648. doi: 10.1016/j.proci.2014.06.087
  • V.N. Prasad, A.R. Masri, S. Navarro-Martinez and K.H. Luo, Investigation of auto-ignition in turbulent methanol spray flames using large eddy simulation, Combust. Flame 160 (2013), pp. 2941–2954. doi: 10.1016/j.combustflame.2013.07.004
  • C.D. Pierce and P. Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, J. Fluid Mech. 504 (2004), pp. 73–97. doi: 10.1017/S0022112004008213
  • C. Pera, J. Reveillon, L. Vervisch and P. Domingo, Modeling subgrid scale mixture fraction variance in LES of evaporating spray, Combust. Flame 146 (2006), pp. 635–648. doi: 10.1016/j.combustflame.2006.07.003
  • F. Mashayek, Droplet–turbulence interactions in low-Mach-number homogeneous shear two-phase flows, J. Fluid Mech. 367 (1998), pp. 163–203. doi: 10.1017/S0022112098001414
  • J.C.-K. Tang, Modelling of multiphase flames using direct numerical simulation and transported PDF methods, Ph. D thesis, University of New South Wales, 2018.
  • S.B. Pope, PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11 (1985), pp. 119–192. doi: 10.1016/0360-1285(85)90002-4
  • H. Zhou, S. Li, Z. Ren and D.H. Rowinski, Investigation of mixing model performance in transported PDF calculations of turbulent lean premixed jet flames through Lagrangian statistics and sensitivity analysis, Combust. Flame 181 (2017), pp. 136–148. doi: 10.1016/j.combustflame.2017.03.011
  • D.C. Haworth, Progress in probability density function methods for turbulent reacting flows, Prog. Energy Combust. Sci. 36 (2010), pp. 168–259. doi: 10.1016/j.pecs.2009.09.003
  • M. Zhu, K.N.C. Bray, O. Rumberg and B. Rogg, PDF transport equations for two-phase reactive flows and sprays, Combust. Flame 122 (2000), pp. 327–338. doi: 10.1016/S0010-2180(00)00127-9
  • J.C.K. Tang, H. Wang, M. Bolla, A. Wehrfritz and E.R. Hawkes, A DNS evaluation of mixing and evaporation models for TPDF modelling of nonpremixed spray flames, Proc. Combust. Inst. 37 (2019), pp. 3363–3372. doi: 10.1016/j.proci.2018.06.014
  • B. Naud, PDF modeling of turbulent sprays and flames using a particle stochastic approach, Ph. D. thesis, Technische Universiteit Delft, 2003.
  • N.A. Beishuizen, PDF modelling and particle-turbulence interaction of turbulent spray flames, Ph.D. thesis, Technische Universiteit Delft, 2008.
  • S. James, M. Anand, and S. Pope, The Lagrangian PDF transport method for simulations of gas turbine combustor flows, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Indianapolis, IN, 2002.
  • J. Villermaux, and J.C. Devillon, Représentation de la Coalescence et de la Redispersion des Domaines de Ségrégation Dans un Fluide Par un Modèle D’interaction Phénoménologique, Proceedings of the 2nd International Symposium on Chemical Reaction Engineering, New York, 1972.
  • S.B. Pope, Self-conditioned fields for large-eddy simulations of turbulent flows, J. Fluid Mech. 652 (2010), pp. 139–169. doi: 10.1017/S0022112009994174
  • N. Khan, M.J. Cleary, O.T. Stein and A. Kronenburg, A two-phase MMC–LES model for turbulent spray flames, Combust. Flame 193 (2018), pp. 424–439. doi: 10.1016/j.combustflame.2018.03.023
  • S. Viswanathan, H. Wang and S.B. Pope, Numerical implementation of mixing and molecular transport in LES/PDF studies of turbulent reacting flows, J. Comput. Phys. 230 (2011), pp. 6916–6957. doi: 10.1016/j.jcp.2011.05.020
  • C. Hollmann and E. Gutheil, Diffusion flames based on a laminar spray flame Library, Combust. Sci. Technol. 135 (1998), pp. 175–192. doi: 10.1080/00102209808924156
  • A.W. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications, Phys. Fluids 16 (2004), pp. 3670–3681. doi: 10.1063/1.1785131
  • G.M. Faeth, Evaporation and combustion of sprays, Prog. Energy Combust. Sci. 9 (1983), pp. 1–76. doi: 10.1016/0360-1285(83)90005-9
  • B. Abramzon and W.A. Sirignano, Droplet vaporization model for spray combustion calculations, Int. J. Heat Mass Transfer 32 (1989), pp. 1605–1618. doi: 10.1016/0017-9310(89)90043-4
  • E. Knudsen and H. Pitsch, Modeling partially premixed combustion behavior in multiphase LES, Combust. Flame 162 (2015), pp. 159–180. doi: 10.1016/j.combustflame.2014.07.013
  • R.S. Miller, K. Harstad and J. Bellan, Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations, Int. J. Multiphase Flow 24 (1998), pp. 1025–1055. doi: 10.1016/S0301-9322(98)00028-7
  • J. Réveillon and L. Vervisch, Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model, Combust. Flame 121 (2000), pp. 75–90. doi: 10.1016/S0010-2180(99)00157-1
  • C.R. Wilke, A viscosity equation for gas mixtures, J. Chem. Phys. 18 (1950), pp. 517–519. doi: 10.1063/1.1747673
  • V.K. Shen, D.W. Siderius, W.P. Krekelberg, and H.W. Hatch (eds.), NIST Standard Reference Simulation Website, NIST Standard Reference Database Number 173, National Institute of Standards and Technology, Gaithersburg, MD.
  • R.J. Kee, F.M. Rupley and J.A. Miller, Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Sandia National Labs., Livermore, CA, 1989.
  • C.K. Law, Combustion physics, Cambridge university press, New York, 2010.
  • C. Verwey and M. Birouk, Fuel vaporization: effect of droplet size and turbulence at elevated temperature and pressure, Combust. Flame 189 (2018), pp. 33–45. doi: 10.1016/j.combustflame.2017.10.010
  • P.P. Popov, H. Wang and S.B. Pope, Specific volume coupling and convergence properties in hybrid particle/finite volume algorithms for turbulent reactive flows. J Comput Phys 294 (2015), pp. 110–126. doi: 10.1016/j.jcp.2015.03.001
  • H. Wang, P.P. Popov and S.B. Pope, Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations, J. Comput. Phys. 229 (2010), pp. 1852–1878. doi: 10.1016/j.jcp.2009.11.012
  • P. Brown, G. Byrne and A. Hindmarsh, VODE: a variable-coefficient ODE solver, SIAM J. Sci. Stat. Comput. 10 (1989), pp. 1038–1051. doi: 10.1137/0910062
  • R.W. Bilger, A mixture fraction framework for the theory and modeling of droplets and sprays, Combust. Flame 158 (2011), pp. 191–202. doi: 10.1016/j.combustflame.2010.08.008
  • S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, Combust. Theor. Model. 1 (1997), pp. 41–63. doi: 10.1080/713665229
  • L. Lu and S.B. Pope, An improved algorithm for in situ adaptive tabulation, J. Comput. Phys. 228 (2009), pp. 361–386. doi: 10.1016/j.jcp.2008.09.015
  • S.-C. Wong and A.-C. Lin, Internal temperature distributions of droplets vaporizing in high-temperature convective flows, J. Fluid Mech. 237 (1992), pp. 671–687. doi: 10.1017/S0022112092003574
  • H. Nomura, Y. Ujiie, H.J. Rath, J.I. Sato and M. Kono, Experimental study on high-pressure droplet evaporation using microgravity conditions, Symp. (Int.) Combust. 26 (1996), pp. 1267–1273. doi: 10.1016/S0082-0784(96)80344-4
  • V. Raghavan, V. Babu, T. Sundararajan and R. Natarajan, Flame shapes and burning rates of spherical fuel particles in a mixed convective environment, Int. J. Heat Mass Transfer 48 (2005), pp. 5354–5370. doi: 10.1016/j.ijheatmasstransfer.2005.07.029
  • J. Li, Z. Zhao, A. Kazakov, M. Chaos, F.L. Dryer and J.J. Scire, A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion, Int. J. Chem. Kinet. 39 (2007), pp. 109–136. doi: 10.1002/kin.20218
  • E.H. Kung, PDF-Based Modeling of Autoignition and Emissions for Advanced Direct-Injection Engines, Ph.D. thesis, The Pennsylvania State University, 2008.
  • E.H. Kung and D.C. Haworth, Transported probability density function (tPDF) modeling for direct-injection internal combustion engines, SAE Int. J Engines 1 (2009), pp. 591–606. doi: 10.4271/2008-01-0969

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.