301
Views
3
CrossRef citations to date
0
Altmetric
Articles

On the ambiguity of premixed flame thickness definition of highly pre-heated mixtures and its implication on turbulent combustion regimes

&
Pages 573-588 | Received 28 Jul 2019, Accepted 17 Jan 2020, Published online: 06 Feb 2020

References

  • R. Prosser, Resolution estimates for simple one-dimensional flames, Combust. Theor. Model. 21(5) (2017), pp. 954–975. doi:10.1080/13647830.2017.1324641.
  • R. Borghi. On the structure and morphology of turbulent premixed flames, in Recent Advances in the Aerospace Sciences, Springer, 1985, Boston, Massachusets, pp. 117–138.
  • F. Williams, Combustion Theory. 2nd ed. The Benjamin/Cummings, Menlo Park, California, 1985.
  • N. Peters, Laminar flamelet concepts in turbulent combustion, Proc. Combust. Inst. 21 (1986), pp. 1231–1250. doi: 10.1016/S0082-0784(88)80355-2
  • R. Abdel-Gayed, D. Bradley, and F.K. Lung, Combustion regimes and the straining of turbulent premixed flames, Combust. Flame 76(2) (1989), pp. 213–218. doi: 10.1016/0010-2180(89)90068-0
  • T. Poinsot, D. Veynante, and S. Candel, Diagrams of premixed turbulent combustion based on direct simulation, Symp. (Int.) Combust. 23(1) (1991), pp. 613–619. Available at https://www.sciencedirect.com/science/article/pii/S0082078406803085. doi: 10.1016/S0082-0784(06)80308-5
  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, UK, 2000.
  • M. Düsing, A. Sadiki, and J. Janicka, Towards a classification of models for the numerical simulation of premixed combustion based on a generalized regime diagram, Combust. Theor. Model.10(1) (2006), pp. 105–132. doi: 10.1080/13647830500293768
  • P.A. Libby and F.A. Williams, Turbulent Reacting Flows, Springer, Berlin, Germany, 1980.
  • Z. Gao, J. Wang, C. Jiang, and C. Lee, Application and theoretical analysis of the flamelet model for supersonic turbulent combustion flows in the scramjet engine, Combust. Theor. Model. 18(6) (2014), pp. 652–691. Available at http://www.tandfonline.com/doi/abs/10.1080/13647830.2014.962617.
  • E. Ranzi, T. Faravelli, P. Gaffuri, and A. Sogaro, Low-temperature combustion: Automatic generation of primary oxidation reactions and lumping procedures, Combust. Flame 102(1-2) (1995), pp. 179–192. Available at https://www.sciencedirect.com/science/article/pii/001021809400253O. doi: 10.1016/0010-2180(94)00253-O
  • E. Ranzi, M. Dente, A. Goldaniga, G. Bozzano, and T. Faravelli, Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures, Prog. Energy. Combust. Sci. 27(1) (2001), pp. 99–139. Available at https://www.sciencedirect.com/science/article/pii/S0360128500000137. doi: 10.1016/S0360-1285(00)00013-7
  • J. Göttgens, F. Mauss, and N. Peters, Analytic approximations of burning velocities and flame thicknesses of lean hydrogen, methane, ethylene, ethane, acetylene, and propane flames, Symp. (Int.) Combust. 24(1) (1992), pp. 129–135. Available at https://www.sciencedirect.com/science/article/pii/S0082078406800202. doi: 10.1016/S0082-0784(06)80020-2
  • L.K. Tseng, M.A. Ismail, and G.M. Faeth, Laminar burning velocities and Markstein numbers of hydrocarbon air flames, Combust. Flame 95(4) (1993), pp. 410–426. doi: 10.1016/0010-2180(93)90007-P
  • F. Xu, P. Sunderland, and G. Faeth, Soot formation in laminar premixed ethylene/air flames at atmospheric pressure, Combust. Flame 108(4) (1997), pp. 471–493. Available at https://www.sciencedirect.com/science/article/pii/S0010218096002003. doi: 10.1016/S0010-2180(96)00200-3
  • M.I. Hassan, K.T. Aung, O.C. Kwon, and G.M. Faeth, Properties of laminar premixed hydrocarbon/air flames at various pressures, J. Propul. Power 14(4) (1998), pp. 479–488. Available at http://arc.aiaa.org/doi/10.2514/2.5304.
  • A.H. Rauch, A. Konduri, J. Chen, H. Kolla, and H.K. Chelliah. DNS investigation of cavity stabilized premixed turbulent ethylene–air flame, in AIAA SciTech Forum, January, Aerospace Sciences Meeting; American Institute of Aeronautics and Astronautics, Kissimmee, Florida, 2018, p. 1674. doi:10.2514/6.2018-1674.
  • C.M. Geipel, R. Rockwell, H. Chelliah, A.D. Cutler, C. Spelker, Z. Hashem, and P.M. Danehy . High-spatial-resolution OH PLIF visualization in a cavity-stabilized ethylene–air turbulent flame, in 33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, June, American Institute of Aeronautics and Astronautics, Denver, Colorado, 2017, p. 3901. doi:10.2514/6.2017-3901.
  • D.A. Lieber, C.P. Goyne, R.D. Rockwell, C.M. Geipel, and H.K. Chelliah. Design and testing of an additively manufactured flame-holder for scramjets flows, in AIAA Propulsion and Energy Forum, July, American Institute of Aeronautics and Astronautics, Cincinnati, Ohio, 2018, p. 4455. doi:10.2514/6.2018-4455.
  • R.J. Kee, J.F. Grcar, M.D. Smooke, J.A. Miller, and E. Meeks, A program for modeling steady, laminar, one-dimensional premixed flames, Report SAND85-8240, Sandia National Laboratories, Livermore, CA, 1985.
  • D.G. Goodwin, R.L. Speth, H.K. Moffat, and B.W. Weber, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, Version 2.4.0 (2018). Available at https://www.cantera.org.
  • H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, and C.K. Law, USC mech version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds, 2007. Available at http://ignis.usc.edu/USC_Mech_II.htm.
  • M.P. Burke, M. Chaos, Y. Ju, F.L. Dryer, and S.J. Klippenstein, Comprehensive H2/O2 kinetic model for high-pressure combustion, Int. J. Chem. Kinet. 44(7) (2012), pp. 444–474. Available at http://doi.wiley.com/10.1002/kin.20603.
  • C.W. Zhou, Y. Li, U. Burke, C. Banyon, K.P. Somers, S. Ding, S. Khan, J.W. Hargis, T. Sikes, O. Mathieu, E.L. Petersen, M. AlAbbad, A. Farooq, Y. Pan, Y. Zhang, Z. Huang, J. Lopez, Z. Loparo, S.S. Vasu, and H.J. Curran, An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: ignition delay time and laminar flame speed measurements, Combust. Flame 197 (2018), pp. 423–438. Available at https://www.sciencedirect.com/science/article/abs/pii/S0010218018303675?via%3Dihub. doi: 10.1016/j.combustflame.2018.08.006
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, Edwards, 2001. Available at https://books.google.com/books?id=HMvCQgAACAAJ.
  • J. Jarosinski, The thickness of laminar flames. Combust. Flame 56(3) (1984), pp. 337–342. doi: 10.1016/0010-2180(84)90067-1
  • R.R. Tirunagari and S.B. Pope, LES/PDF for premixed combustion in the DNS limit, Combust. Theor. Model. 20(5) (2016), pp. 834–865. doi:10.1080/13647830.2016.1188991.
  • R.L. Gordon, A.R. Masri, S.B. Pope, and G.M. Goldin, A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow, Combust. Theor. Model. 11(3) (2007), pp. 351–376. doi: 10.1080/13647830600903472
  • S. Desai, R. Sankaran, and H.G. Im, Unsteady deflagration speed of an auto-ignitive dimethyl-ether (DME)/air mixture at stratified conditions, Proc. Combust. Inst. 37(4) (2019), pp. 4717–4727. doi:10.1016/j.proci.2018.09.019.
  • P. Zhao, W. Liang, S. Deng, and C.K. Law, Initiation and propagation of laminar premixed cool flames, Fuel 166 (2016), pp. 477–487. doi:10.1016/j.fuel.2015.11.025.
  • R.L. Gordon, A.R. Masri, and E. Mastorakos, Heat release rate as represented by [OH] × [CH2O] and its role in autoignition, Combust. Theor. Model. 13(4) (2009), pp. 645–670. doi: 10.1080/13647830902957200
  • F. Williams, Personal communication, April 2014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.