554
Views
5
CrossRef citations to date
0
Altmetric
Articles

CFD simulations of hydrogen deflagration in slow and fast combustion regime

ORCID Icon & ORCID Icon
Pages 589-605 | Received 19 May 2019, Accepted 24 Jan 2020, Published online: 12 Feb 2020

References

  • A.L. Camp, J.C. Cummings, M.P. Sherman, C.F. Kupiec, R.J. Healy, J.S. Caplan, J.R. Sandhop, and J.H. Saunders, Light Water Reactor Hydrogen Manual, U.S. Nuclear Regulatory Commission, Washington, DC, 1983.
  • OECD/NEA/CSNI, OECD / SETH-2 Project PANDA and MISTRA Experiments Final Summary Report - Investigation of Key Issues for the Simulation of Thermal- hydraulic Conditions in Water Reactor Containment, OECD, 2012.
  • OECD/NEA/CSNI, Aerosol and Iodine Issues, and Hydrogen Mitigation under Accidental Conditions in Watercooled Reactors: Thermal-hydraulics, Hydrogen, Aerosols and Iodine (THAI-2) Project - Final Report, OECD, 2017.
  • OECD/NEA/CSNI, Hydrogen and Fission Product Issues Relevant for Containment Safety Assessment under Severe Accident Conditions, OECD, 2010.
  • OECD/NEA/CSNI, Status Report on Hydrogen Management and Related Computer Codes, OECD, 2015.
  • J.P. van Dorsselaere, SARNET 2 final report 2014. https://www.irsn.fr/EN/Research/publications-documentation/Publications/PSN-RES/Pages/2014-SARNET-2-final-report.aspx.
  • D. Paladino, S. Guentay, M. Andreani, I. Tkatschenko, J. Brinster, F. Dabbene, S. Kelm, H.J. Allelein, D.C. Visser, S. Benz, T. Jordan, Z. Liang, E. Porcheron, J. Malet, A. Bentaib, A. Kiselev, T. Yudina, A. Filippov, A. Khizbullin, M. Kamnev, A. Zaytsev and A. Loukianov, The euratom-rosatom ercosam-samara projects on containment thermal-hydraulics of current and future LWRs for severe accident management. Int. Congr. Adv. Nucl. Power Plants 2012, ICAPP 2012 2 (2012), pp. 1359–1368.
  • A. Bentaib, N. Meynet, A. Bleyer and R. Grosseuvres, MITHYGENE hydrogen deflagration Benchmark main outcomes and conclusions. Nuthos 11 (2016), pp. 1–13.
  • A. Bentaib, A. Bleyer, N. Chaumeix, B. Schramm, P. Kostka, M. Movahed, H.S. Kang and M. Povilaitis, Final results of the SARNET Hydrogen deflagration Benchmark Effect of turbulence on flame acceleration, 5th European Review Meeting on Severe Accident Research (ERMSAR–2012) Cologne (Germany), March 21–23, (2012), pp. 1–15.
  • A. Bentaib, A. Bleyer, N. Meynet, N. Chaumeix, B. Schramm, M. Höhne, P. Kostka, M. Movahed, S. Worapittayaporn, T. Brähler, H. Seok-Kang, M. Povilaitis, I. Kljenak and P. Sathiah, SARNET hydrogen deflagration benchmarks: main outcomes and conclusions. Ann Nucl Energy 74 (2014), pp. 143–152. doi: 10.1016/j.anucene.2014.07.012.
  • R. Cherbański and E. Molga, CFD modelling of hydrogen deflagration in the ENACCEF facility. Inżynieria i Apar. Chem 56 (2017), pp. 62–63.
  • H.-J. Allelein, S. Arndt, W. Klein-Heßling, S. Schwarz, C. Spengler and G. Weber, COCOSYS: Status of development and validation of the German containment code system. Nucl. Eng. Des 238 (2008), pp. 872–889. doi: 10.1016/j.nucengdes.2007.08.006.
  • J.P. van Dorsselaere, C. Seropian, P. Chatelard, F. Jacq, J. Fleurot, P. Giordano, N. Reinke, B. Schwinges, H.J. Allelein and W. Luther, The ASTEC Integral code for severe Accident simulation. Nucl. Technol 165 (2009), pp. 293–307. doi: 10.13182/NT09-A4102.
  • R.M. Summers, R.K.J. Cole, E.A. Boucheron, M.K. Carmel, S.E. Dingman and J.E. Kelly, (Sandia N.L. Kelly Albuquerque, NM (USA)), MELCOR 1. 8. 0: A Computer Code for Nuclear Reactor Severe Accident Source Term and Risk Assessment Analyses, United States, 1991. https://www.osti.gov/servlets/purl/6188851.
  • M.M. Stempniewicz, SPECTRA Computer Code Manual – Version 3.61, July 2018, M.M. Stempniewicz, Arnhem, July 4, 2018.
  • P. Sathiah, S. Van Haren, E. Komen and D. Roekaerts, The role of CFD combustion modeling in hydrogen safety management - II: Validation based on homogeneous hydrogen-air experiments. Nucl. Eng. Des 252 (2012), pp. 289–302. doi: 10.1016/j.nucengdes.2012.06.023.
  • J. Xiao, J.R. Travis and M. Kuznetsov, Numerical investigations of heat losses to confinement structures from hydrogen-air turbulent flames in ENACCEF facility. Int J Hydrogen Energy 40 (2015), pp. 13106–13120. doi: 10.1016/j.ijhydene.2015.07.090.
  • Y. Halouane and A. Dehbi, CFD simulations of premixed hydrogen combustion using the Eddy Dissipation and the turbulent flame Closure models. Int J Hydrogen Energy 42 (2017), pp. 21990–22004. doi: 10.1016/j.ijhydene.2017.07.075.
  • B.F. Magnussen and B.H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. Combust 16 (1977), pp. 719–729. doi: 10.1016/S0082-0784(77)80366-4.
  • V.L. Zimont, Theory of turbulent combustion of a homogeneous fuel mixture at high reynolds numbers. Combust Explos Shock Waves 15 (1979), pp. 305–311. doi: 10.1007/BF00785062.
  • C. Morley, GASEQ Windows-based Computer Program for Equilibrium Calculations, 2005. http://www.gaseq.co.uk/.
  • ANSYS Inc., ANSYS Fluent, Release 19.1, Help System, Theory Guide, ANSYS Inc., Canonsburg, PA, 2018.
  • D.D.S. Liu and R. MacFarlane, Laminar burning velocities of hydrogen-air and hydrogen-air-steam flames. Combust Flame 49 (1983), pp. 59–71. doi: 10.1016/0010-2180(83)90151-7
  • B. Leckner, Spectral and total emissivity of water vapor and Carbon Dioxide. Combust Flame 19 (1972), pp. 33–48. doi: 10.1016/S0010-2180(72)80084-1
  • R. Viskanta, Radiation heat transfer in combustion systems. Prog. Energy Combust. Sci 13 (1987), pp. 97–160. doi: 10.1016/0360-1285(87)90008-6.
  • M. Matalon and P. Metzener, The propagation of premixed flames in closed tubes. J. Fluid Mech 336 (1997), pp. 331–350. doi: 10.1017/S0022112096004843.
  • H. Xiao, W. An, Q. Duan and J. Sun, Dynamics of premixed hydrogen/air flame in a closed combustion vessel. Int J Hydrogen Energy 38 (2013), pp. 12856–12864. doi: 10.1016/j.ijhydene.2013.07.082.
  • H. Guénoche, Chapter E - Flame Propagation in Tubes and in Closed Vessels, in AGARDograph, 75, Markstein George H., ed., Elsevier, Amsterdam, 1964. pp. 107–181. Available at https://doi.org/10.1016/B978-1-4831-9659-6.50008-1.
  • B.E. Launder and D.B. Spalding, The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng 3 (1974), pp. 269–289. doi: 10.1016/0045-7825(74)90029-2.
  • V. Zimont, W. Polifke, M. Bettelini and W. Weisenstein, An efficient computational model for premixed turbulent combustion at high reynolds numbers based on a turbulent flame speed closure. J Eng Gas Turbines Power 120 (1998), pp. 526–532. doi: 10.1115/1.2818178.
  • A. Lipatnikov and J. Chomiak, Turbulent burning velocity and speed of developing, curved, and strained flames. 30th Int. Symp. Combust 29 (2002), pp. 2113–2121. doi: 10.1016/S1540-7489(02)80257-7.
  • Franck Verbecke, Formation and Combustion of Non-Uniform Hydrogen-Air Mixtures, University of Ulster, Ulster, 2009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.