290
Views
5
CrossRef citations to date
0
Altmetric
Articles

An improved model to calculate radiative heat transfer in hot combustion gases

, , , , , & show all
Pages 829-851 | Received 05 Nov 2019, Accepted 08 May 2020, Published online: 27 May 2020

References

  • S.F. Fernandez, C. Paul, A. Sircar, A. Imren, D.C. Haworth, S. Roy and M.F. Modest, Soot and spectral radiation modeling for high-pressure turbulent spray flames. Combust. Flame 190 (2017), pp. 402–415. doi: 10.1016/j.combustflame.2017.12.016
  • D. Poitou, J. Amaya and M.E. Hafi, Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations. Combust. Flame 159 (2012), pp. 1605–1618. doi: 10.1016/j.combustflame.2011.12.016
  • C. Yin and J. Yan, Oxy-fuel combustion of pulverized fuels: combustion fundamentals and modeling. Appl. Energ. 162 (2016), pp. 742–762. doi: 10.1016/j.apenergy.2015.10.149
  • C. Han and S. Baek, Radiation affected ignition and flame propagation for solid fuel in a cylindrical enclosure. Combust. Theor. Model 9 (2005), pp. 49–76. doi: 10.1080/13647830500051851
  • J.F. Wang and T. Niioka, The effect of radiation reabsorption on NO formation in CH4/air counterflow diffusion flames. Combust. Theor. Model 5 (2001), pp. 385–398. doi: 10.1088/1364-7830/5/3/308
  • J. Cai, S. Lei, A. Dasgupta, M.F. Modest and D.C. Haworth, High fidelity radiative heat transfer models for high-pressure laminar hydrogen–air diffusion flames. Combust. Theor. Model 18 (2014), pp. 607–626. doi: 10.1080/13647830.2014.959060
  • M.F. Modest, Radiative Heat Transfer, Academic Press, San Diego, 2013.
  • F. Liu and G.J. Smallwood, An efficient approach for the implementation of the SNB based correlated-k method and its evaluation. J. Quant. Spectrosc. Ra. 84 (2004), pp. 465–475. doi: 10.1016/S0022-4073(03)00263-2
  • S. Zheng, Y. Yang and H. Zhou, The effect of different HITRAN databases on the accuracy of the SNB and SNBCK calculations. Int. J. Heat Mass. Transf. 129 (2019), pp. 1232–1241. doi: 10.1016/j.ijheatmasstransfer.2018.10.067
  • M.F. Modest, Narrow-band and full-spectrum k -distributions for radiative heat transfer – correlated- k vs. scaling approximation. J. Quant. Spectrosc. Ra. 76 (2003), pp. 69–83. doi: 10.1016/S0022-4073(02)00046-8
  • Y. Zhou, Q. Wang, and T. Li, A new model to simulate infrared radiation from an aircraft exhaust system. Chin. J. Aeronaut. 30(2) (2017), pp. 651–662. doi: 10.1016/j.cja.2017.02.014
  • A.T. Modak, Exponential wide band parameters for the pure rotational band of water vapor. J. Quant. Spectrosc. Ra. 21 (1979), pp. 131–142. doi: 10.1016/0022-4073(79)90024-4
  • D.K. Edwards and W.A. Menard, Comparison of models for correlation of total band absorption. Appl. Optics 3 (1964), pp. 621–625. doi: 10.1364/AO.3.000621
  • D.K. Edwards and A. Balakrishnan, Thermal radiation by combustion gases. Int. J. Heat Mass. Transf. 16 (1973), pp. 25–40. doi: 10.1016/0017-9310(73)90248-2
  • O. Marin and R.O. Buckius, Wide band correlated-k method applied to absorbing, emitting, and scattering media. J. Thermophys. Heat Tr. 11 (2012), pp. 598–598. doi: 10.2514/2.6290
  • W.A. Fiveland and M.K. Denison, A correlation for the reordered wave number of the wide-band absorptance of radiating gases. J. Heat Transf. 119 (1997), pp. E11–E11.
  • M.F. Modest, The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer. J. Heat Transf. 113(3) (1991), pp. 650–656. doi: 10.1115/1.2910614
  • T.F. Smith and Z.F. Shen, Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Transf. 104 (1982), pp. 602–608. doi: 10.1115/1.3245174
  • A. Soufiani and E. Djavdan, A comparison between weighted sum of gray gases and statistical narrow-band radiation models for combustion applications. Combust. Flame 97 (1994), pp. 240–250. doi: 10.1016/0010-2180(94)90007-8
  • R. Johansson, L. Bo, K. Andersson and F. Johnsson, Account for variations in the H2 O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model. Combust. Flame 158 (2011), pp. 893–901. doi: 10.1016/j.combustflame.2011.02.001
  • C. Yin, L.C.R. Johansen, L.A. Rosendahl and S.K. Kær, New weighted sum of gray gases model applicable to computational fluid dynamics (CFD) modeling of oxy-fuel combustion: derivation, validation, and implementation. Energy Fuels 24 (2010), pp. 6275–6282. doi: 10.1021/ef101211p
  • M.H. Bordbar, G. Węcel and T. Hyppänen, A line by line based weighted sum of gray gases model for inhomogeneous CO2 –H2O mixture in oxy-fired combustion. Combust. Flame 161 (2014), pp. 2435–2445. doi: 10.1016/j.combustflame.2014.03.013
  • T. Kangwanpongpan, F.H.R. França, R.C.D. Silva, P.S. Schneider and H.J. Krautz, New correlations for the weighted-sum-of-gray-gases model in oxy-fuel conditions based on HITEMP 2010 database. Int. J. Heat Mass. Transf. 55 (2012), pp. 7419–7433. doi: 10.1016/j.ijheatmasstransfer.2012.07.032
  • L.J. Dorigon, G. Duciak, R. Brittes, F. Cassol, M. Galarça and F.H.R. França, WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures. Int. J. Heat Mass. Transf. 64 (2013), pp. 863–873. doi: 10.1016/j.ijheatmasstransfer.2013.05.010
  • X. Yang, Z. He, S. Dong and H. Tan, Evaluation of the non-gray weighted sum of gray gases models for radiative heat transfer in realistic non-isothermal and non-homogeneous flames using decoupled and coupled calculations. Int. J. Heat Mass. Transf. 134 (2019), pp. 226–236. doi: 10.1016/j.ijheatmasstransfer.2019.01.038
  • T. Kangwanpongpan, R.C.D. Silva and H.J. Krautz, Prediction of oxy-coal combustion through an optimized weighted sum of gray gases model. Energy 41 (2012), pp. 244–251. doi: 10.1016/j.energy.2011.06.010
  • M.K. Denison, B.W. Webb and M.K. Denison, A spectral line-based weighted sum of gray gases model for arbitrary RTE solvers. J. Heat Transf. 115 (1993), pp. 1004–1012. doi: 10.1115/1.2911354
  • M.K. Denison and B.W. Webb, Spectral line-based weighted-sum-of-gray-gases model in nonisothermal nonhomogeneous media. J. Heat Transf. 117 (1995), pp. 359–365. doi: 10.1115/1.2822530
  • M.K. Denison and B.W. Webb, Spectral-line weighted-sum-of-gray-gases model for H2O/CO2 mixtures. J. Heat Transf. 117 (1995), pp. 788–792. doi: 10.1115/1.2822652
  • P. Rivière, A. Soufiani, M.Y. Perrin, H. Riad and A. Gleizes, Air mixture radiative property modelling in the temperature range 10,000–40,000 K. J. Quant. Spectrosc. Ra. 56 (1996), pp. 29–45. doi: 10.1016/0022-4073(96)00033-7
  • L. Pierrot, P. Rivière, A. Soufiani and J. Taine, A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases. J. Quant. Spectrosc. Ra. 62 (1999), pp. 609–624. doi: 10.1016/S0022-4073(98)00124-1
  • M.F. Modest and H. Zhang, The full-spectrum correlated-k distribution for thermal radiation from molecular gas-particulate mixtures. J. Heat Transf. 124 (2001), pp. 30–38. doi: 10.1115/1.1418697
  • L. Wang and M.F. Modest, Narrow-band based multiscale full-spectrum k-distribution method for radiative transfer in inhomogeneous gas mixtures. J. Heat Transf. 127 (2005), pp. 740–748. doi: 10.1115/1.1925281
  • A.F.S.H.C. Hottel, Radiative Transfer, McGraw-Hill, New York, 1967.
  • D.K. Edwards, Molecular gas band radiation. Adv. Heat Transf. 12 (1976), pp. 115–193. doi: 10.1016/S0065-2717(08)70163-1
  • L. Yan, G. Yue and B. He, Development of an absorption coefficient calculation method potential for combustion and gasification simulations. Int. J. Heat Mass. Transf. 91 (2015), pp. 1069–1077. doi: 10.1016/j.ijheatmasstransfer.2015.08.047
  • D.K. Edwards and R. Matavosian, Scaling rules for total absorptivity and emissivity of gases. J. Heat Transf. 106 (1984), pp. 684–689. doi: 10.1115/1.3246739
  • V. Kez, F. Liu, J.L. Consalvi, J. Ströhle and B. Epple, A comprehensive evaluation of different radiation models in a gas turbine combustor under conditions of oxy-fuel combustion with dry recycle. J. Quant. Spectrosc. Ra. 172 (2016), pp. 121–133. doi: 10.1016/j.jqsrt.2015.11.002
  • H. Chu, M. Gu, J.L. Consalvi, F. Liu and H. Zhou, Effects of total pressure on non-grey gas radiation transfer in oxy-fuel combustion using the LBL, SNB, SNBCK, WSGG, and FSCK methods. J. Quant. Spectrosc. Ra. 172 (2016), pp. 24–35. doi: 10.1016/j.jqsrt.2015.07.009
  • M.R. Karim and J. Naser, CFD modelling of combustion and associated emission of wet woody biomass in a 4 MW moving grate boiler. Fuel 222 (2018), pp. 656–674. doi: 10.1016/j.fuel.2018.02.195
  • M.R. Karim, A.A. Bhuiyan, A.A.R. Sarhan and J. Naser, CFD simulation of biomass thermal conversion under air/oxy-fuel conditions in a reciprocating grate boiler. Renew. Energy 146 (2020), pp. 1416–1428. doi: 10.1016/j.renene.2019.07.068
  • J.T. Pearson, B.W. Webb, V.P. Solovjov and J. Ma, Effect of total pressure on the absorption line blackbody distribution function and radiative transfer in H2O, CO2, and CO. J. Quant. Spectrosc. Ra. 143 (2014), pp. 100–110. doi: 10.1016/j.jqsrt.2013.08.011
  • Z. Yue and R.D. Reitz, Numerical investigation of radiative heat transfer in internal combustion engines. Appl. Energy 235 (2019), pp. 147–163. doi: 10.1016/j.apenergy.2018.10.098
  • F. Cassol, R. Brittes, F.H.R. França and O.A. Ezekoye, Application of the weighted-sum-of-gray-gases model for media composed of arbitrary concentrations of H2O, CO2 and soot. Int. J. Heat Mass. Transf. 79 (2014), pp. 796–806. doi: 10.1016/j.ijheatmasstransfer.2014.08.032
  • H. Hu and W. Qiang, Improved MSMGFSK models apply to gas radiation heat transfer calculation of exhaust system of TBCC. J. Heat Transf. 139 (2017), pp. 012702-1–012702-11. https://doi.org/10.1115/1.4034485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.