396
Views
4
CrossRef citations to date
0
Altmetric
Articles

A virtual chemical mechanism for prediction of NO emissions from flames

, , &
Pages 872-902 | Received 11 Sep 2019, Accepted 29 Apr 2020, Published online: 01 Jun 2020

References

  • I.E.A. International Energy Agency, World energy outlook 2016, (2016). Available at https://webstore.iea.org/world-energy-outlook-2016.
  • G.P. Smith, D.M. Golden, M. Frenklach, B. Eiteener, M. Goldenberg, C.T. Bowman, R.K. Hanson, W.C. Gardiner, V.V. Lissianski, and Z.W. Qin, Available at http://www.me.berkeley.edu/gri_mech (2011).
  • A.H. Lefebvre and D.R. Ballal, Gas turbine combustion, CRC press, Abingdon, 1998.
  • N. Darabiha, Transient behaviour of laminar counterflow hydrogen-air diffusion flames with complex chemistry, Combust. Sci. Techol. 86 (1992), pp. 163–181. doi: 10.1080/00102209208947193
  • C. Fenimore Formation of nitric oxide in premixed hydrocarbon flames. Symposium (International) on Combustion, University of Utah Salt Lake City, Utah, USA, Vol. 13, Elsevier, 1971, pp. 373–380.
  • A.N. Hayhurst and I.M. Vince, Nitric oxide formation from N2 in flames: the importance of “prompt” NO, Prog. Energy Combust. Sci. 6 (1980), pp. 35–51. doi: 10.1016/0360-1285(80)90014-3
  • Y.B. Zeldovich, Selected Works of Yakov Borisovich Zeldovich, Volume I: Chemical Physics and Hydrodynamics, Vol. 140, Princeton University Press, Princeton, 2014.
  • K.K. Kuo, Principles of combustion, John Wiley, New York, 2005.
  • T. Faravelli, A. Frassoldati, and E. Ranzi, Kinetic modeling of the interactions between NO and hydrocarbons in the oxidation of hydrocarbons at low temperatures, Combust. Flame 132 (2003), pp. 188–207. doi: 10.1016/S0010-2180(02)00437-6
  • A. Frassoldati, T. Faravelli, and E. Ranzi, Kinetic modeling of the interactions between NO and hydrocarbons at high temperature, Combust. Flame 135 (2003), pp. 97–112. doi: 10.1016/S0010-2180(03)00152-4
  • P. Glarborg, J.A. Miller, B. Ruscic, and S.J. Klippenstein, Modeling nitrogen chemistry in combustion, Prog. Energy Combust. Sci. 67 (2018), pp. 31–68. doi: 10.1016/j.pecs.2018.01.002
  • T. Lu and C.K. Law, Toward accommodating realistic fuel chemistry in large-scale computations, Prog. Energy Combust. Sci. 35 (2009), pp. 192–215. doi: 10.1016/j.pecs.2008.10.002
  • H. Wang and M. Frenklach, Detailed reduction of reaction mechanisms for flame modeling, Combust. Flame 87 (1991), pp. 365–370. doi: 10.1016/0010-2180(91)90120-Z
  • B. Fiorina, D. Veynante, and S. Candel, Modeling combustion chemistry in large eddy simulation of turbulent flames, Flow Turbul. Combust. 94 (2015), pp. 3–42. doi: 10.1007/s10494-014-9579-8
  • B. Fiorina and M. Cailler Accounting for complex chemistry in the simulations of future turbulent combustion systems. AIAA Scitech 2019 Forum, San Diego, USA, 2019, p. 0995.
  • C.K. Westbrook and F.L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combust. Sci. Technol. 27 (1981), pp. 31–43. doi: 10.1080/00102208108946970
  • W.P. Jones and R.P. Lindstedt, Global reaction schemes for hydrocarbon combustion, Combust. Flame 73 (1988), pp. 233–249. doi: 10.1016/0010-2180(88)90021-1
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10 (1984), pp. 319–339. doi: 10.1016/0360-1285(84)90114-X
  • O. Gicquel, N. Darabiha, and Thévenin D., Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28 (2000), pp. 1901–1908. doi: 10.1016/S0082-0784(00)80594-9
  • J. Van Oijen, F. Lammers, and De Goey L., Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combust. Flame 127 (2001), pp. 2124–2134. doi: 10.1016/S0010-2180(01)00316-9
  • T. Lu and C.K. Law, A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry, Combust. Flame 154 (2008), pp. 761–774. doi: 10.1016/j.combustflame.2008.04.025
  • P. Pepiot-Desjardins and H. Pitsch, An efficient error-propagation-based reduction method for large chemical kinetic mechanisms, Combust. Flame 154 (2008), pp. 67–81. doi: 10.1016/j.combustflame.2007.10.020
  • E. Fernandez-Tarrazo, Sánchez A.L., A. Linan, and F.A. Williams, A simple one-step chemistry model for partially premixed hydrocarbon combustion, Combust. Flame 147 (2006), pp. 32–38. doi: 10.1016/j.combustflame.2006.08.001
  • B. Franzelli, E. Riber, Sanjosé M., and T. Poinsot, A two-step chemical scheme for kerosene–air premixed flames, Combust. Flame 157 (2010), pp. 1364–1373. doi: 10.1016/j.combustflame.2010.03.014
  • T. Jaravel, E. Riber, B. Cuenot, and G. Bulat, Large eddy simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction, Proc. Combust. Inst. 36 (2017), pp. 3817–3825. doi: 10.1016/j.proci.2016.07.027
  • T. Jaravel, E. Riber, B. Cuenot, and P. Pepiot, Prediction of flame structure and pollutant formation of Sandia flame D using large eddy simulation with direct integration of chemical kinetics, Combust. Flame 188 (2018), pp. 180–198. doi: 10.1016/j.combustflame.2017.08.028
  • U. Maas and S.B. Pope Implementation of simplified chemical kinetics based on intrinsic low-dimensional manifolds. Symposium (International) on Combustion, University of Sydney, Sydney, Australia, Vol. 24, Elsevier, 1992, pp. 103–112.
  • V. Bykov and U. Maas, The extension of the ildm concept to reaction–diffusion manifolds, Combust. Theory Modell. 11 (2007), pp. 839–862. doi: 10.1080/13647830701242531
  • J. Nafe and U. Maas, Modeling of NO formation based on ILDM reduced chemistry, Proc. Combust. Inst. 29 (2002), pp. 1379–1385. doi: 10.1016/S1540-7489(02)80169-9
  • G. Godel, P. Domingo, and L. Vervisch, Tabulation of NOx chemistry for large-eddy simulation of non-premixed turbulent flames, Proc. Combust. Inst. 32 (2009), pp. 1555–1561. doi: 10.1016/j.proci.2008.06.129
  • A. Vreman, B. Albrecht, Van Oijen J., De Goey L., and R. Bastiaans, Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F, Combust. Flame 153 (2008), pp. 394–416. doi: 10.1016/j.combustflame.2008.01.009
  • M. Ihme and H. Pitsch, Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation, Phys. Fluids 20 (2008), pp. 055110. doi: 10.1063/1.2911047
  • A. Ketelheun, C. Olbricht, F. Hahn, and J. Janicka, No prediction in turbulent flames using LES/FGM with additional transport equations, Proc. Combust. Inst. 33 (2011), pp. 2975–2982. doi: 10.1016/j.proci.2010.07.021
  • F. Pecquery, V. Moureau, G. Lartigue, L. Vervisch, and A. Roux, Modelling nitrogen oxide emissions in turbulent flames with air dilution: Application to LES of a non-premixed jet-flame, Combust. Flame 161 (2014), pp. 496–509. doi: 10.1016/j.combustflame.2013.09.018
  • P.E. Vervisch, O. Colin, J.B. Michel, and N. Darabiha, NO relaxation approach (NORA) to predict thermal NO in combustion chambers, Combust. Flame 158 (2011), pp. 1480–1490. doi: 10.1016/j.combustflame.2010.12.014
  • B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, and N. Darabiha, Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation, Combust. Flame 140 (2005), pp. 147–160. doi: 10.1016/j.combustflame.2004.11.002
  • P.D. Nguyen, L. Vervisch, V. Subramanian, and P. Domingo, Multidimensional flamelet-generated manifolds for partially premixed combustion, Combust. Flame 157 (2010), pp. 43–61. doi: 10.1016/j.combustflame.2009.07.008
  • V. Bykov and U. Maas, Problem adapted reduced models based on reaction–diffusion manifolds (REDIMs), Proc. Combust. Inst. 32 (2009), pp. 561–568. doi: 10.1016/j.proci.2008.06.186
  • M. Cailler, N. Darabiha, D. Veynante, and B. Fiorina, Building-up virtual optimized mechanism for flame modeling, Proc. Combust. Inst. 36 (2017), pp. 1251–1258. doi: 10.1016/j.proci.2016.05.028
  • M. Cailler, N. Darabiha, and B. Fiorina, Development of a virtual optimized chemistry method. Application to hydrocarbon/air combustion, Combust. Flame 211 (2020), pp. 281–302. doi: 10.1016/j.combustflame.2019.09.013
  • G. Maio, M. Cailler, R. Mercier, and B. Fiorina, Virtual chemistry for temperature and CO prediction in LES of non-adiabatic turbulent flames, Proc. Combust. Inst. 37 (2019), pp. 2591–2599. doi: 10.1016/j.proci.2018.06.131
  • A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, A computational tool for the detailed kinetic modeling of laminar flames: Application to C2H4/CH4 coflow flames, Combust. Flame 160 (2013), pp. 870–886. doi: 10.1016/j.combustflame.2013.01.011
  • J. Caudal, B. Fiorina, Labégorre B., and O. Gicquel, Modeling interactions between chemistry and turbulence for simulations of partial oxidation processes, Fuel Process. Technol. 134 (2015), pp. 231–242. Available at http://dx.doi.org/10.1016/j.fuproc.2015.01.040.
  • OpenFOAM, (2019). Available at www.openfoam.org.
  • A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method, Energy Fuels 27 (2013), pp. 7730–7753. doi: 10.1021/ef4016334
  • A. Stagni, A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Lumping and reduction of detailed kinetic schemes: an effective coupling, Ind. Eng. Chem. Res. 53 (2013), pp. 9004–9016. doi: 10.1021/ie403272f
  • M.S. Day and J.B. Bell, Numerical simulation of laminar reacting flows with complex chemistry, Combust. Theory Modell. 4 (2000), pp. 535–556. doi: 10.1088/1364-7830/4/4/309
  • C.K. Law, Combustion at a crossroads: Status and prospects, Proc. Combust. Inst. 31 (2007), pp. 1–29. doi: 10.1016/j.proci.2006.08.124
  • P. Pepiot, Automatic strategies to model transportation fuel surrogates, Ph.D thesis, Stanford University, Stanford, CA, 2008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.