314
Views
3
CrossRef citations to date
0
Altmetric
Articles

Flamelet chemistry model for efficient axisymmetric counterflow flame simulations with realistic nozzle geometries and gravitational body force

&
Pages 926-952 | Received 31 Aug 2019, Accepted 28 Apr 2020, Published online: 26 Jun 2020

References

  • C.Y. Wang, Similarity stagnation point solutions of the Navier–Stokes equations–review and extension, Eur. J. Mech. B/Fluids 27(6) (2008), pp. 678–683. doi: 10.1016/j.euromechflu.2007.11.002
  • T.W. Chapman and G.L. Bauer, Stagnation-point viscous flow of an incompressible fluid between porous plates with uniform blowing, Appl. Sci. Res. 31(3) (1975), pp. 223–239. doi: 10.1007/BF02116160
  • K Seshadri and F.A. Williams, Laminar flow between parallel plates with injection of a reactant at high reynolds number, Int. J. Heat Mass Transf. 21(2) (1978), pp. 251–253. doi: 10.1016/0017-9310(78)90230-2
  • R.J. Kee, J.A. Miller, G.H. Evans, and G Dixon-Lewis, A computational model of the structure and extinction of strained, opposed flow, premixed methane-air flames, Symp. (Int.) Combust. 22 (1989(a)), pp. 1479–1494. doi: 10.1016/S0082-0784(89)80158-4
  • R.J. Kee, F.M. Rupley, and J.A. Miller, CHEMKIN-II: A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical report, Sandia National Laboratories, Livermore, CA (USA), 1989 b. SAND-89-8009.
  • V Mittal, H Pitsch, and F Egolfopoulos, Assessment of counterflow to measure laminar burning velocities using direct numerical simulations, Combust. Theory Model. 16(3) (2012), pp. 419–433. doi: 10.1080/13647830.2011.631033
  • U Niemann, K Seshadri, and F.A. Williams, Accuracies of laminar counterflow flame experiments, Combust. Flame 162 (2014), pp. 1–10.
  • J.M. Bergthorson, S.D. Salusbury, and P.E. Dimotakis, Experiments and modelling of premixed laminar stagnation flame hydrodynamics, J. Fluid. Mech. 681 (2011), pp. 340–369. doi: 10.1017/jfm.2011.203
  • J.M. Bergthorson, K Sone, T.W. Mattner, P.E. Dimotakis, D.G. Goodwin, and D.I. Meiron, Impinging laminar jets at moderate reynolds numbers and separation distances, Phys. Rev. E 72(6) (2005), pp. 066307. doi: 10.1103/PhysRevE.72.066307
  • G Scribano and F Bisetti, Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows, Phys. Fluids 28 (2016), pp. 123605. doi: 10.1063/1.4972238
  • J Carpio, A Liñán, A.L. Sánchez, and F.A. Williams, Aerodynamics of axisymmetric counterflowing jets, Combust. Flame 177 (2017), pp. 137–143. doi: 10.1016/j.combustflame.2016.12.005
  • A.D. Weiss, W Coenen, and A.L. Sánchez, Aerodynamics of planar counterflowing jets, J. Fluid. Mech. 821 (2017), pp. 1–30. doi: 10.1017/jfm.2017.192
  • R.P. Pawlowski, A.G. Salinger, J.N. Shadid, and T.J. Mountziaris, Bifurcation and stability analysis of laminar isothermal counterflowing jets, J. Fluid. Mech. 551 (2006), pp. 117–139. doi: 10.1017/S0022112005008396
  • A Ansari, K.K. Chen, R.R. Burrell, and F.N. Egolfopoulos, Effects of confinement, geometry, inlet velocity profile, and Reynolds number on the asymmetry of opposed-jet flows, Theor. Comput. Fluid Dyn. 32 (2018), pp. 349–369. doi: 10.1007/s00162-018-0457-1
  • W.F. Li, T.L. Yao, H.F. Liu, and F.C. Wang, Experimental investigation of flow regimes of axisymmetric and planar opposed jets, AIChE J. 57 (2011), pp. 1434–1445. doi: 10.1002/aic.12369
  • W.F. Li, G.F. Huang, G.Y. Tu, H.F. Liu, and F.C. WANG, Experimental study of planar opposed jets with acoustic excitation, Phys. Fluids 25 (2013), pp. 014108–00.
  • M. Di Renzo, J. Urzay, P.De Palma, M.D. de Tullio, and G. Pascazio, The effects of incident electric fields on counterflow diffusion flames, Combust. Flame 193 (2018), pp. 177–191. doi: 10.1016/j.combustflame.2018.03.001
  • C.E. Frouzakis, J Lee, A.G. Tomboulides, and K Boulouchos, Two-dimensional direct numerical simulation of opposed-jet hydrogen-air diffusion flame, Proc. Combust. Inst. 27 (1998), pp. 571–577. doi: 10.1016/S0082-0784(98)80448-7
  • N Bouvet, D Davidenko, C Chauveau, L Pillier, and Y Yoon, On the simulation of laminar strained flames in stagnation flows: 1D and 2D approaches versus experiments, Combust. Flame 161 (2013), pp. 438–452. doi: 10.1016/j.combustflame.2013.09.010
  • R.F. Johnson, A.C. VanDine, G.L. Esposito, and H.K. Chelliah, On the axisymmetric counterflow flame simulations: is there an optimal nozzle diameter and separation distance to apply quasi one-dimensional theory? Combust. Sci. Technol. 187 (2015), pp. 37–59. doi: 10.1080/00102202.2014.972503
  • L Figura and A Gomez, Laminar counterflow steady diffusion flames under high pressure (P≤3 MPa) conditions, Combust. Flame 159 (2012), pp. 142–150. doi: 10.1016/j.combustflame.2011.06.013
  • OpenFOAM. Open-source field operation and manipulation. OpenFOAM v4.1. Available at https://openfoam.org.
  • A.G. Tomboulides, J.C. Y Lee, and S.A. Orszag, Numerical simulation of low Mach number reactive flows, J. Sci. Comput. 12 (1997), pp. 139–167. doi: 10.1023/A:1025669715376
  • B Mueller, Low Mach number asymptotics of the Navier-Stokes equations and numerical implications, Lecture Series, von Kármán Institute for Fluid Dynamics, 1999.
  • G.K. Batchelor, An Introduction to Fluid Dynamics, 1st ed., Cambridge University Press, New York, 2000.
  • N Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10 (1984), pp. 319–339. doi: 10.1016/0360-1285(84)90114-X
  • F Carbone, K Gleason, and A Gomez, Pressure effects on incipiently sooting partially premixed counterflow flames of ethylene, Proc. Combust. Inst. 36 (2017), pp. 1395–1402. doi: 10.1016/j.proci.2016.07.041
  • L Figura, Experimental study of incipiently-sooting counterflow diffusion flames at high pressures. PhD thesis, Yale University, 2014.
  • H.G. Weller, G Tabor, H Jasak, and C Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys. 12 (1998), pp. 620. doi: 10.1063/1.168744
  • K Seshadri and N Peters, Asymptotic structure and extinction of methane-air diffusion flames, Combust. Flame 73 (1988), pp. 23–44. doi: 10.1016/0010-2180(88)90051-X
  • Z Luo, C.S. Yoo, E.S. Richardson, J.H. Chen, C.K. Law, and T.F. Lu, Chemical explosive mode analysis for a turbulent lifted ethylene jet flame in highly-heated coflow, Combust. Flame 159 (2012), pp. 265–274. Mechanism downloaded from Available at http://spark.engr.uconn.edu/mechs/C2H4_2011.zip on April 14, 2019. doi: 10.1016/j.combustflame.2011.05.023
  • T.P. Coffee and J.M. Heimerl, Transport algorithms for premixed, laminar steady-state flames, Combust. Flame 43 (1981), pp. 273–289. doi: 10.1016/0010-2180(81)90027-4
  • A Cuoci, A Frassoldati, T Faravelli, and E Ranzi, Numerical modeling of laminar flames with detailed kinetics based on the operator-splitting method, Energy Fuels 27 (2013 a), pp. 7730–7753. doi: 10.1021/ef4016334
  • A Cuoci, A Frassoldati, T Faravelli, and E Ranzi, A computational tool for the detailed kinetic modeling of laminar flames: Application to C2H4/CH4 coflow flames, Combust. Flame 160 (2013 b), pp. 870–886. doi: 10.1016/j.combustflame.2013.01.011
  • A Cuoci, A Frassoldati, T Faravelli, and E Ranzi, OpenSMOKE++: an object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms, Comput. Phys. Commun.192 (2015), pp. 237–264. doi: 10.1016/j.cpc.2015.02.014
  • GitHub repository 2019. Available at https://github.com/acuoci.
  • R.I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys. 62 (1986), pp. 40–65. doi: 10.1016/0021-9991(86)90099-9
  • J.H. Ferziger and M Peric, Computational Methods for Fluid Dynamics, 3rd ed., Springer, New York, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.