165
Views
1
CrossRef citations to date
0
Altmetric
Articles

Analysis of flame characteristics of low calorific value gas diffusion combustion under the action of thermal dynamics

, ORCID Icon, , &
Pages 965-982 | Received 16 Jan 2020, Accepted 02 Jul 2020, Published online: 16 Jul 2020

References

  • S. Karyeyen and M. Ilbas, Experimental and numerical analysis of turbulent premixed combustion of low calorific value coal gases in a generated premixed burner. Fuel 220 (2018), pp. 586–598. doi: 10.1016/j.fuel.2018.02.052
  • F. Song, Z. Wen, Z. Dong, et al., Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation. Energy 119 (2017), pp. 497–503. doi: 10.1016/j.energy.2016.12.077
  • H. Dai, Q. Zhao, B. Lin, S. He, et al., Premixed combustion of low-concentration coal mine methane with water vapor addition in a two-section porous media burner. Fuel 213 (2018), pp. 72–82. doi: 10.1016/j.fuel.2017.09.123
  • G. Wang, P. Tang, Y. Li, et al., Flame front stability of low calorific fuel gas combustion with preheated air in a porous burner. Energy 170 (2019), pp. 1279–1288. doi: 10.1016/j.energy.2018.12.128
  • M. Saediamiri, M. Birouk and A. Kozinski J, Flame stability limits of low swirl burner-effect of fuel composition and burner geometry. Fuel 208 (2017), pp. 410–422. doi: 10.1016/j.fuel.2017.07.028
  • Q. Yang, Z. Liu, X. Hou, et al., Measurements of laminar flame speeds and flame instability analysis of E30-air premixed flames at elevated temperatures and pressures. Fuel 259 (2020), pp.  116223.
  • X. Zhang, X. Hou, Y. Wang, et al., Study on flame characteristics of low heat value gas. Energy Convers Manage 196 (2019), pp. 344–353. doi: 10.1016/j.enconman.2019.05.024
  • B. Lefort, A. El Bakali, L. Gasnot, et al., Experimental and numerical investigation of low-pressure laminar premixed synthetic natural gas flames in rich conditions. Fuel 189 (2017), pp. 210–237. doi: 10.1016/j.fuel.2016.10.043
  • I. Yilmaz, H. Yilmaz, O. Cam, et al., Combustion characteristics of premixed hydrogen/air flames in a geometrically modified micro combustor. Fuel 217 (2018), pp. 536–543. doi: 10.1016/j.fuel.2018.01.015
  • B. Yan, B. Li, E. Baudoin, et al., Structures and stabilization of low calorific value gas turbulent partially premixed flames in a conical burner. Exp Therm Fluid Sci 34(3) (2010), pp. 412–419. doi: 10.1016/j.expthermflusci.2009.10.011
  • R. Chowdhury B and M. Cetegen B, Experimental study of the effects of free stream turbulence on characteristics and flame structure of bluff-body stabilized conical lean premixed flames. Combust Flame 178 (2017), pp. 311–328. doi: 10.1016/j.combustflame.2016.12.019
  • Z. Hu and X. Zhang, Experimental study on flame stability of biogas/hydrogen combustion. Int J Hydrogen Energy 44(11) (2019), pp. 5607–5614. doi: 10.1016/j.ijhydene.2018.08.011
  • Y. Kim T, H. Kim Y, J. Ahn Y, et al., Combustion stability of inverse oxygen/hydrogen coaxial jet flames at high pressure. Energy 180 (2019), pp. 121–132. doi: 10.1016/j.energy.2019.05.089
  • Y. Ge, S. Li and X. Wei, Combustion states distinction of the methane/oxygen laminar co-flow diffusion flame at high pressure. Fuel 243 (2019), pp. 221–229. doi: 10.1016/j.fuel.2019.01.113
  • X. Zhu, X. Xia and P. Zhang, Near-field flow stability of buoyant methane/air inverse diffusion flames. Combust Flame 191 (2018), pp. 66–75. doi: 10.1016/j.combustflame.2018.01.009
  • K. Zhang, G. Hu, S. Liao, et al., Numerical study on the effects of oxygen enrichment on methane/air flames. Fuel 176 (2016), pp. 93–101. doi: 10.1016/j.fuel.2016.02.064
  • S. Choi, Y. Kim T, K. Kim H, et al., Combustion stability of gaseous CH4/O2 and H2/O2 coaxial jet flames in a single-element combustor. Energy 132 (2017), pp. 57–64. doi: 10.1016/j.energy.2017.05.057
  • M. Elbaz A and L. Roberts W, Stability and structure of inverse swirl diffusion flames with weak to strong swirl. Exp Therm Fluid Sci 112(109989) (2020.
  • H. Chu, L. Consalvi J, M. Gu, et al., Calculations of radiative heat transfer in an axisymmetric jet diffusion flame at elevated pressures using different gas radiation models. J Quant Spectrosc Radiat Transfer 197 (2017), pp. 12–25. doi: 10.1016/j.jqsrt.2017.02.008
  • S. Karyeyen and M. Ilbas, Turbulent diffusion flames of coal derived-hydrogen supplied low calorific value syngas mixtures in a new type of burner: An experimental study. Int J Hydrogen Energy 42(4) (2017), pp. 2411–2423. doi: 10.1016/j.ijhydene.2016.09.063
  • S. Zhen H, L. Wei Z, B. Chen Z, et al., An experimental comparative study of the stabilization mechanism of biogas-hydrogen diffusion flame. Int J Hydrogen Energy 44(3) (2019), pp. 1988–1997. doi: 10.1016/j.ijhydene.2018.11.171
  • Z. Lu, A diffusion-flame analog of forward smolder waves:(II) stability analysis. Combust Flame 196 (2018), pp. 529–542. doi: 10.1016/j.combustflame.2018.07.006
  • M. Ilbas, A. Bektas and S. Karyeyen, A new burner for oxy-fuel combustion of hydrogen containing low-calorific value syngases: An experimental and numerical study. Fuel 256 (2019), pp. 115990. doi: 10.1016/j.fuel.2019.115990
  • Tang Jiapeng. Ansys Fluent 16.0 super learning manual.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.