357
Views
2
CrossRef citations to date
0
Altmetric
Articles

Burning characteristics and soot formation in laminar methyl methacrylate pool flames

, , , , , & ORCID Icon show all
Pages 1153-1178 | Received 28 Apr 2020, Accepted 02 Sep 2020, Published online: 23 Sep 2020

References

  • C.A. Harper, Modern Plastics Handbook, McGraw-Hill, Lutherville, MD2000. p. 64.
  • K. Seshadri and F.A. Williams, Structure and extinction of counter flow diffusion flames above condensed fuels: comparison between poly (methyl methacrylate) and its liquid monomer, both burning in nitrogen–air mixtures. J. Polym. Sci. A Polym. Chem. 167 (1978), pp. 1755–1778. doi: 10.1002/pol.1978.170160726
  • W.R. Zeng, S.F. Li, and W.K. Chow, Preliminary studies on burning behavior of poly methyl methacrylate. J. Fire Sci. 20(4) (2002), pp. 297–317. doi: 10.1177/073490402762574749
  • T. Wang, S. Li, Z. Lin, D. Han, and X. Han, Experimental study of laminar lean premixed methyl methacrylate/oxygen/argon flame at low pressure. J. Phys. Chem. 112(6) (2008), pp. 1219–1227. doi: 10.1021/jp709927j
  • Z. Lin, T. Wang, D. Han, X. Han, S. Li, Y. Li, and Z. Tian, Study of combustion intermediates in fuel-rich methyl methacrylate flame with tunable synchrotron vacuum ultraviolet photo ionization mass spectrometry. Rapid Commun. Mass Spectrom. 23(1) (2009), pp. 85–92. doi: 10.1002/rcm.3838
  • J. Gore, M. Klassen, A. Hamins, and T. Kashiwagi, Fuel property effects on burning rate and radiative transfer from liquid pool flames. Fire Saf. Sci. 3 (1991), pp. 395–404. doi: 10.3801/IAFSS.FSS.3-395
  • A. Hamins, M. Klassen, J. Gore, and T. Kashiwagi, Estimate of flame radiance via a single location measurement in liquid pool fires. Combust. Flame 86(3) (1991), pp. 223–228. doi: 10.1016/0010-2180(91)90102-H
  • A. Hamins, S.J. Fischer, T. Kashiwagi, M.E. Klassen, and J.P. Gore, Heat feedback to the fuel surface in pool fires. Combust. Sci. Technol. 97(1–3) (1994), pp. 37–62. doi: 10.1080/00102209408935367
  • H.R. Rakesh Ranga, O.P. Korobeinichev, V. Raghavan, A.G. Tereshchenko, S.A. Trubachev, and A.G. Shmakov, A study of the effects of ullage during the burning of horizontal PMMA and MMA surfaces. Fire Mater. 43(3) (2019), pp. 241–255. doi: 10.1002/fam.2692
  • B. Yang, C.K. Westbrook, T.A. Cool, N. Hansen, and K. Kohse-Höinghaus, Photoionization mass spectrometry and modeling study of premixed flames of three unsaturated C5H8O2 esters. Proc. Combust. Inst. 341 (2013), pp. 443–451. doi: 10.1016/j.proci.2012.05.034
  • D. Shanmugasundaram, D.A. Knyazkov, A.M. Dmitriev, O.P. Korobeinichev, E.J.K. Nilsson, A.A. Konnov, and K. Narayanaswamy, Experimental study and a short kinetic model for high temperature oxidation of methyl methacrylate. Combust. Sci. Technol. 191(10) (2019), pp. 1789–1814. doi: 10.1080/00102202.2018.1535492
  • D. Shanmugasundaram, V. Raghavan, and K. Narayanaswamy Compact kinetic model for high temperature oxidation of MMA using DRGEPSA, Asia South Pacific Conference on Combustion (ASPACC), Fukuoka, Japan, 2019.
  • A.T. Modak and P.A. Croce, Plastic pool fires. Combust. Flame 30 (1977), pp. 251–265. doi: 10.1016/0010-2180(77)90074-8
  • S. Bard and P.J. Pagni, Spatial variation of soot volume fractions. Fire Safety Sci. 1 (1986), pp. 361. doi: 10.3801/IAFSS.FSS.1-361
  • G.H. Markstein, Radiative properties of plastics fires. Symp. Int. Combust. 17(1) (1979), pp. 1053–1062. doi: 10.1016/S0082-0784(79)80101-0
  • G.H. Markstein, Scanning-radiometer measurements of the radiance distribution in PMMA pool fires. Symp. Int. Combust. 18(1) (1981), pp. 537–547. doi: 10.1016/S0082-0784(81)80059-8
  • ANSYS Fluent, Release 15.0, Help System, Theory Guide. ANSYS, Inc.
  • K.C. Adiga, D.E. Ramaker, P.A. Tatem, and F.W. Williams, Modeling thermal radiation in open liquid pool fires. Fire Safety Sci. 2 (1989), pp. 241–250. doi: 10.3801/IAFSS.FSS.2-241
  • S.J. Brookes and J.B. Moss, Prediction of soot and thermal radiation in confined turbulent jet diffusion flames. Combust. Flame 116 (1999), pp. 486–503. doi: 10.1016/S0010-2180(98)00056-X
  • C.P. Fenimore and G.W. Jones, Oxidation of soot by hydroxyl radicals. J. Phys. Chem. 71 (1967), pp. 593–597. doi: 10.1021/j100862a021
  • F. Liu, H. Guo, G.J. Smallwood, and O.L. Gulder, Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. J. Quant. Spectros. Radiat. Transfer. 73 (2002), pp. 409–421. doi: 10.1016/S0022-4073(01)00205-9
  • R.S. Barlow, N.S.A. Smith, J.Y. Chen, and R.W. Bilger, Nitric oxide formation in dilute hydrogen jet flames: isolation of the effects of radiation and turbulence-chemistry sub models. Combust. Flame 117(1-2) (1999), pp. 4–31. doi: 10.1016/S0010-2180(98)00071-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.