135
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of the spatial distribution of CO2 dilution on localised forced ignition of stoichiometric CH4 - CO2 - air mixtures

, & ORCID Icon
Pages 364-387 | Received 13 Aug 2020, Accepted 04 Jan 2021, Published online: 27 Jan 2021

References

  • J. Holm-Nielsen, T. Al Seadi, and P. Oleskowicz-Popiel, The future of anaerobic digestion and biogas utilization. Bioresour. Technol 100(22) (2009), pp. 5478–5484. doi: 10.1016/j.biortech.2008.12.046
  • N.N. Mustafi and A.K. Agarwal, Biogas for transport sector: current status, barriers, and path forward for large-scale adaptation, in Alternative Fuels and Their Utilization Strategies in Internal Combustion Engines, Energy, Environment, and Sustainability, A. Singh, Y. Sharma, N. Mustafi, and A. Agarwal, eds., Springer, Singapore, 2020, pp. 229–271.
  • S. Koonaphapdeelert, P. Aggarangsi, and J. Moran, Biomethane. Production and Applications Green Energy and Technology, Springer, Singapore, 2020.
  • T. Patterson, S. Esteves, R. Dinsdale, and A. Guwy, An evaluation of the policy and techno-economic factors affecting the potential for biogas upgrading for transport fuel use in the UK. Energy Policy 39 (2011), pp. 1806–1816. doi: 10.1016/j.enpol.2011.01.017
  • W. Papacz, Biogas as vehicle fuel. J. KONES Powertrain Transport 18(1) (2011), pp. 403–410.
  • M. Persson, Biogas upgrading and utilization as vehicle fuel. Proceedings of the Future of Biogas in Europe III (2007), pp. 60–66.
  • A.D. Korberg, I.R. Skov, and B.V. Mathiesen, The role of biogas and biogas-derived fuels in a 100% renewable energy system in Denmark. Energy 199 (2020), pp. 117426. doi: 10.1016/j.energy.2020.117426
  • O. Jonsson, Biogas Upgrading and Use as a Transport Fuel, Swedish Gas Centre, Malmoe, Sweden.
  • N.N. Mustafi, R.R. Raine, and P.K. Bansal, The use of Biogas in internal combustion engines: a review, ICES2006-1306, Proceedings of ICES2006 ASME Internal Combustion Engine Division 2006 Spring Technical Conference May 8-10, 2006, Aachen, Germany.
  • Y. Qian, S. Sun, D. Ju, X. Shan, and X. Lu, Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines. Renewable Sustainable Energy Rev 69 (2017), pp. 50–58. doi: 10.1016/j.rser.2016.11.059
  • N.H.S. Ray, M.K. Mohanty, and R.C. Mohanty, Biogas as alternate fuel in diesel engines: a literature review. IOSR J Mech Civil Eng (IOSR-JMCE) 9(1), (Sep. - Oct. 2013), pp. 23–28.
  • N.M. Hernandez and E.P. Villanueva, Production, purification and utilization of biogas as fuel for internal combustion engine. AIP Conf Proc 1941 (2018), pp. 020009-1–020009-11.
  • A. Larsson, A. Berg, and A. Bonaldo, Fuel flexibility at ignition conditions for industrial gas turbines, Proc. ASME Turbo Expo, (2013), GT2013-95536.
  • G.S. Jatana, M. Himabindu, H.S. Thakur, and R.V. Ravikrishna, Strategies for high efficiency and stability in biogas-fuelled small engines. Exp Therm Fluid Sci 54 (2014), pp. 189–195. doi: 10.1016/j.expthermflusci.2013.12.008
  • M.S. Shah, P.K. Halder, A.S.M. Shamsuzzaman, M.S. Hossain, S.K. Pal, and E. Sarker, Perspectives of biogas conversion into Bio-CNG for automobile fuel in Bangladesh. J Renew. Energy 2017(Article ID 4385295) (2017), pp. 14. doi:10.1155/2017/4385295.
  • I.W. Surataa, T.G.T. Nindhiab, I.K.A. Atmikac, D.N.K.P. Negarad, and I.W.E.P. Putrae, Simple conversion method from gasoline to biogas fueled small engine to powered electric generator. Energy Procedia 52 (2014), pp. 626–632. doi: 10.1016/j.egypro.2014.07.118
  • S. Rasi, A. Veijanen, and J. Rintala, Trace compounds of biogas from different biogas production plants. Energy 32(8) (2007), pp. 1375–1380. doi: 10.1016/j.energy.2006.10.018
  • A. Vasavan, P. de Goey, and J. van Oijen, Numerical study on the autoignition of biogas in moderate or intense low oxygen dilution nonpremixed combustion systems. Energy Fuels 32(8) (2018), pp. 8768–8780. doi: 10.1021/acs.energyfuels.8b01388
  • T. Lieuwen, V. McDonell, E. Petersen, and D. Santavicca, Fuel flexibility influences on premixed combustor blowout, flashback autoignition, and stability. J. Eng. Gas Turbines Power 130(1) (2008), pp. 810. doi: 10.1115/1.2771243
  • Y. Lafay, B. Taupin, G. Martins, G. Cabot, B. Renou, and A. Boukhalfa, Experimental study of biogas combustion using a gas turbine configuration. Exp. Fluids 43(2-3) (2007), pp. 395–410. doi: 10.1007/s00348-007-0302-6
  • I.A. Mulla, S.R. Chakravarthy, N. Swaminathan, and R. Balachandran, Evolution of flame-kernel in laser-induced spark ignited mixtures: A parametric study. Combust. Flame 164 (2016), pp. 303–318. doi: 10.1016/j.combustflame.2015.11.029
  • C. Forsich, M. Lackner, F. Winter, H. Kopecek, and E. Wintner, Characterization of laser-induced ignition of biogas-air mixtures. Biomass Bioenergy 27 (2004), pp. 299–312. doi: 10.1016/j.biombioe.2004.02.002
  • B. Galmiche, F. Halter, F. Foucher, and P.G. Dagaut, Effects of dilution on laminar burning velocity of premixed methane/air flames. Energy Fuels 25(3) (2011), pp. 948–954. doi: 10.1021/ef101482d
  • C.J. Mordaunt and W.C. Pierce, Design and preliminary results of an atmospheric pressure model gas turbine combustor utilizing varying CO2 doping concentration in CH4 to emulate biogas combustion. Fuel 124 (2014), pp. 258–268. doi: 10.1016/j.fuel.2014.01.097
  • C. Pera, S. Chevillard, and J. Reveillon, Effect of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combust. Flame 160 (2013), pp. 1020–1032. doi: 10.1016/j.combustflame.2013.01.009
  • D. Patel and N. Chakraborty, Localised forced ignition of globally stoichiometric stratified mixtures: A numerical investigation. Combust. Theor. Model 18 (2014), pp. 627–651. doi: 10.1080/13647830.2014.959456
  • D. Patel and N. Chakraborty, Effects of energy deposition characteristics on localised forced ignition of homogeneous mixtures. Int. J. Spray Combust. Dyn 7 (2015), pp. 151–174. doi: 10.1260/1756-8277.7.2.151
  • D. Patel and N. Chakraborty, Effects of fuel Lewis number on localised forced ignition of globally stoichiometric stratified mixtures: A numerical investigation. Flow Turb. Combust 96 (2016), pp. 1083–1105. doi: 10.1007/s10494-015-9692-3
  • D. Patel and N. Chakraborty, Effects of fuel Lewis number and the energy deposition characteristics on localized forced ignition of homogeneous mixture: A numerical investigation. Int. J. Spray Combust. Dyn 8 (2016), pp. 183–196. doi: 10.1177/1756827716651579
  • D. Patel and N. Chakraborty, Effects of mixture distribution on localised forced ignition of stratified mixtures: A numerical investigation. Combust. Sci. Technol 188 (2016), pp. 1904–1924. doi: 10.1080/00102202.2016.1214415
  • D.R. Ballal and A.H. Lefebvre, The influence of flow parameters on minimum ignition energy and quenching distances. Proc. Combust. Inst 15 (1975), pp. 1473–1481. doi: 10.1016/S0082-0784(75)80405-X
  • D.R. Ballal and A.H. Lefebvre, Spark ignition of turbulent flowing gases, 15th Aerospace Sciences Meeting, 155, American Institute of Aeronautics and Astronautics, Reston, VA (1977), pp. 129–155.
  • N. Chakraborty and E. Mastorakos, Direct numerical simulation of localised forced ignition of turbulent mixing layers: the effects of mixture fraction and its gradient. Flow Turb. Combust 80 (2008), pp. 155–186. doi: 10.1007/s10494-007-9110-6
  • C. Turquand d’Auzay, V. Papapostolou, S.F. Ahmed, and N. Chakraborty, Effects of turbulence intensity and biogas composition on the localised forced ignition of turbulent mixing layers. Combust. Sci. Technol 191 (2019), pp. 868–897. doi: 10.1080/00102202.2019.1576651
  • E. Mastorakos, Ignition of turbulent non-premixed flames. Prog. Energy Combust. Sci 35(1) (2009), pp. 57–97. doi: 10.1016/j.pecs.2008.07.002
  • G. Bansal and H.G. Im, Autoignition and front propagation in low temperature combustion environments. Combust Flame 158 (2011), pp. 2105–2112. doi: 10.1016/j.combustflame.2011.03.019
  • E.R. Hawkes, R. Sankaran, P. Pebay, and J.H. Chen, Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: II. Parametric study. Combust. Flame 145 (2006), pp. 145–159. doi: 10.1016/j.combustflame.2005.09.018
  • R. Sankaran R, H.G. Im, E.R. Hawkes, and J.H. Chen, The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen–air mixture. Proc. Combust. Inst 30 (2005), pp. 875–882. doi: 10.1016/j.proci.2004.08.176
  • R. Yu and X.-S. Bai, Direct numerical simulation of lean hydrogen/air auto-ignition in a constant volume enclosure. Combust. Flame 157 (2010), pp. 1071–1086. doi: 10.1016/j.combustflame.2010.01.019
  • V.R. Kuznetsov and V.L. Sabelnikov, Turbulence and Combustion, 1st Edition, Hemisphere, xxx, 1990.
  • J. Bibrzycki and T. Poinsot, Reduced chemical kinetic mechanisms for methane combustion in O2/N2 and O2/CO2 atmosphere, Work. note ECCOMET WN/CFD/10/17, CERFACS (2010).
  • C.K. Westbrook and F.L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol 27(1–2) (1981), pp. 31–43. doi: 10.1080/00102208108946970
  • L. Selle, G. Lartigue, T. Poinsot, R. Koch, K.U. Schildmacher, W. Krebs, B. Prade, P. Kaufmann, and D. Veynante, Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust Flame 137(4) (2004), pp. 489–505. doi: 10.1016/j.combustflame.2004.03.008
  • G. P. Smith, D.M. Golden, M., Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, J.V..V. Lissianski, and Z. Qin, GRI-MECH 3.0. http://www.me.berkeley.edu/grimech/.
  • R. Bilger, Turbulent flows with nonpremixed reactants, in Turbulent Reacting Flows, Libby P., Williams F., eds., Springer, Berlin/Heidelberg, 1980. Vol. 44 of Topics in Applied Physics, pp. 65–113.
  • A.P. Wandel, N. Chakraborty, and E. Mastorakos, Direct numerical simulations of turbulent flame expansion in fine sprays. Proc. Combust. Inst 32 (2009), pp. 2283–2290. doi: 10.1016/j.proci.2008.06.102
  • N. Chakraborty, R.S. Cant, and E. Mastorakos, Effects of turbulence on spark ignition in inhomogeneous mixtures: A Direct numerical simulation (DNS) study. Combust. Sci. Technol 179 (2007), pp. 293–317. doi: 10.1080/00102200600809555
  • N. Chakraborty, H. Hesse, and E. Mastorakos, Effects on fuel Lewis number on localised forced ignition of turbulent mixing layers. Flow Turb. Combust 84 (2010), pp. 125–166. doi: 10.1007/s10494-009-9231-1
  • C. Turquand d’Auzay, V. Papapostolou, S.F. Ahmed, and N. Chakraborty, On the minimum ignition energy and its transition in the localised forced ignition of turbulent homogeneous mixtures. Combust Flame 201 (2019), pp. 104–117. doi: 10.1016/j.combustflame.2018.12.015
  • C. Vázquez-Espí and A. Liñán, Fast, non-diffusive ignition of a gaseous reacting mixture subject to a point energy source. Combust. Theory Model 5 (2001), pp. 485–498. doi: 10.1088/1364-7830/5/3/313
  • C. Vázquez-Espí and A. Liñán, Thermal-diffusive ignition and flame initiation by a local energy source. Combust. Theory Model 6(2) (2002), pp. 297–315. doi: 10.1088/1364-7830/6/2/309
  • K.W. Jenkins and R.S. Cant, DNS of turbulent flame kernels, in Proc. 2nd AFOSR Conf. on DNS and LES, Rutgers University, USA, C. Liu, L. Sakell, T. Beautner, eds., Kluwer Academic Publishers, Dordrecht, 1999, pp. 192–202.
  • A. Gray, I. Bethune, R. Kenway, L. Smith, M. Guest, C. Kitchen, P. Calleja, A. Korzynski, S. Rankin, M. Ashworth, A. Porter, I. Todorov, M. Plummer, E. Jones e, L. Steenman-Clark, B. Ralston, and C. Laughton, Mapping application performance to HPC architecture. Comput Phys. Commun 183 (2012), pp. 520–529. doi: 10.1016/j.cpc.2011.11.013
  • A.A. Wray, Minimal storage time advancement schemes for spectral methods, unpublished report, NASA Ames Research Center, California (1990).
  • T. Poinsot and S.K. Lele, Boundary conditions for direct simulation of compressible viscous flows. J. Comp. Phys 101 (1992), pp. 104–129. doi: 10.1016/0021-9991(92)90046-2
  • R.S. Rogallo, Numerical experiments in homogeneous turbulence. Technical report, NASA Ames 1981.
  • G.K. Batchelor and A.A. Townsend, Decay of turbulence in final period. Proc. Roy. Soc. Lond A194 (1948), pp. 527–543.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.