378
Views
5
CrossRef citations to date
0
Altmetric
Articles

Fully explicit formulae for flame speed in infinite and finite porous media

ORCID Icon, &
Pages 785-812 | Received 01 Sep 2020, Accepted 14 May 2021, Published online: 16 Jun 2021

References

  • J. Howell, M. Hall, and J. Ellzey, Combustion of hydrocarbon fuels within porous inert media, Prog. Energy. Combust. Sci. 22 (1996), pp. 121–145. doi: 10.1016/0360-1285(96)00001-9
  • M. Kamal and A. Mohamad, Combustion in porous media, Proc. Inst. Mech. Engin. Part A: J. Power Energy 220 (2006), pp. 487–508. doi: 10.1243/09576509JPE169
  • M.A. Mujeebu, M.Z. Abdullah, A. Mohamad, and M.A. Bakar, Trends in modeling of porous media combustion, Prog. Energy. Combust. Sci. 36 (2010), pp. 627–650. doi: 10.1016/j.pecs.2010.02.002
  • F. Weinberg, Combustion temperatures: the future?, Nature 233 (1971), pp. 239–241. doi: 10.1038/233239a0
  • N.S. Kaisare and D.G. Vlachos, A review on microcombustion: Fundamentals, devices and applications, Prog. Energy. Combust. Sci. 38 (2012), pp. 321–359. doi: 10.1016/j.pecs.2012.01.001
  • J.L. Ellzey, E.L. Belmont, and C.H. Smith, Heat recirculating reactors: Fundamental research and applications, Prog. Energy. Combust. Sci. 72 (2019), pp. 32–58. doi: 10.1016/j.pecs.2018.12.001
  • J. Kiefer, M. Weikl, T. Seeger, F. Von Issendorff, F. Beyrau, and A. Leipertz, Non-intrusive gas-phase temperature measurements inside a porous burner using dual-pump cars, Proc. Combust. Inst. 32 (2009), pp. 3123–3129. doi: 10.1016/j.proci.2008.06.026
  • J. Dunnmon, S. Sobhani, M. Wu, R. Fahrig, and M. Ihme, An investigation of internal flame structure in porous media combustion via x-ray computed tomography, Proc. Combust. Inst. 36 (2017), pp. 4399–4408. doi: 10.1016/j.proci.2016.06.188
  • T. Takeno and K. Sato, An excess enthalpy flame theory, Combust. Sci. Technol. 20 (1979), pp. 73–84. doi: 10.1080/00102207908946898
  • T. Takeno, K. Sato, and K. Hase, A theoretical study on an excess enthalpy flame, in Symposium (International) on Combustion, Vol. 18. Elsevier, 1981, pp. 465–472.
  • Y. Yoshizawa, K. Sasaki, and R. Echigo, Analytical study of the structure of radiation controlled flame, Int. J. Heat. Mass. Transf. 31 (1988), pp. 311–319. doi: 10.1016/0017-9310(88)90014-2
  • P.F. Hsu and R.D. Matthews, The necessity of using detailed kinetics in models for premixed combustion within porous media, Combust. Flame. 93 (1993), pp. 457–466. doi: 10.1016/0010-2180(93)90145-S
  • P.F. Hsu, W.D. Evans, and J.R. Howell, Experimental and numerical study of premixed combustion within nonhomogeneous porous ceramics, Combust. Sci. Technol. 90 (1993), pp. 149–172. doi: 10.1080/00102209308907608
  • A.J. Barra and J.L. Ellzey, Heat recirculation and heat transfer in porous burners, Combust. Flame. 137 (2004), pp. 230–241. doi: 10.1016/j.combustflame.2004.02.007
  • N. Djordjevic, P. Habisreuther, and N. Zarzalis, A numerical investigation of the flame stability in porous burners employing various ceramic sponge-like structures, Chem. Eng. Sci. 66 (2011), pp. 682–688. doi: 10.1016/j.ces.2010.11.012
  • S. Panigrahy, Investigation on combustion in porous inert burners using gaseous and liquid fuels, Ph.D. diss., Indian Institute of Technology Guwahati, 2018.
  • J. Li, Q. Li, J. Shi, X. Liu, and Z. Guo, Numerical study on heat recirculation in a porous micro-combustor, Combust. Flame. 171 (2016), pp. 152–161. doi: 10.1016/j.combustflame.2016.06.007
  • S. Sathe, R. Peck, and T. Tong, A numerical analysis of heat transfer and combustion in porous radiant burners, Int. J. Heat. Mass. Transf. 33 (1990), pp. 1331–1338. doi: 10.1016/0017-9310(90)90262-S
  • D. Diamantis, E. Mastorakos, and D. Goussis, Simulations of premixed combustion in porous media, Combust. Theory Model. 6 (2002), pp. 383–411. doi: 10.1088/1364-7830/6/3/301
  • Z. Jia, Q. Ye, H. Wang, H. Li, and S. Shi, Numerical simulation of a new porous medium burner with two sections and double decks, Processes 6 (2018), pp. 185. doi: 10.3390/pr6100185
  • I. Schoegl, Radiation effects on flame stabilization on flat flame burners, Combust. Flame. 159 (2012), pp. 2817–2828. doi: 10.1016/j.combustflame.2012.05.010
  • C. Bedoya, I. Dinkov, P. Habisreuther, N. Zarzalis, H. Bockhorn, and P. Parthasarathy, Experimental study, 1d volume-averaged calculations and 3d direct pore level simulations of the flame stabilization in porous inert media at elevated pressure, Combust. Flame. 162 (2015), pp. 3740–3754. doi: 10.1016/j.combustflame.2015.07.012
  • I. Dinkov, P. Habisreuther, and H. Bockhorn, Numerical prediction of burning velocity and flame thickness in a radial-flow porous burner, in Proceedings of the European Combustion Meeting. 2013, pp. P5–78.
  • B. Deshaies and G. Joulin, Asymptotic study of an excess-enthalpy flame, Combust. Sci. Technol. 22 (1980), pp. 281–285. doi: 10.1080/00102208008952391
  • J. Buckmaster and T. Takeno, Blow-off and flashback of an excess enthalpy flame. Combust. Sci. Technol. 25 (1981), pp. 153–158. doi: 10.1080/00102208108547515
  • F. Escobedo and H.J. Viljoen, Modeling of porous radiant burners with large extinction coefficients, Can. J. Chem. Eng. 72 (1994), pp. 805–814. doi: 10.1002/cjce.5450720506
  • L. Boshoff-Mostert and H.J. Viljoen, Analysis of homogeneous combustion in monolithic structures, Chem. Eng. Sci. 51 (1996), pp. 1107–1111. doi: 10.1016/S0009-2509(96)80009-1
  • F.M. Pereira, A.A. Oliveira, and F.F. Fachini, Asymptotic analysis of stationary adiabatic premixed flames in porous inert media, Combust. Flame. 156 (2009), pp. 152–165. doi: 10.1016/j.combustflame.2008.08.003
  • F.M. Pereira, A.A.M. Oliveira, and F.F. Fachini, Theoretical analysis of ultra-lean premixed flames in porous inert media, J. Fluid. Mech. 657 (2010), pp. 285–307. doi: 10.1017/S0022112010001461
  • F.M. Pereira, A.A. Oliveira, and F.F. Fachini, Maximum superadiabatic temperature for stabilized flames within porous inert media, Combust. Flame. 158 (2011), pp. 2283–2288. doi: 10.1016/j.combustflame.2011.04.001
  • X. Fu, R. Viskanta, and J. Gore, Combustion and heat transfer interaction in a pore-scale refractory tube burner, J. Thermophys. Heat Trans. 12 (1998), pp. 164–171. doi: 10.2514/2.6341
  • R. Fursenko, S. Minaev, and V. Babkin, Thermal interaction of two flame fronts propagating in channels with opposing gas flows, Combust. Explosion Shock Waves 37 (2001), pp. 493–500. doi: 10.1023/A:1012325216665
  • P.D. Ronney, Analysis of non-adiabatic heat-recirculating combustors, Combust. Flame. 135 (2003), pp. 421–439. doi: 10.1016/j.combustflame.2003.07.003
  • Y. Ju and C. Choi, An analysis of sub-limit flame dynamics using opposite propagating flames in mesoscale channels, Combust. Flame. 133 (2003), pp. 483–493. doi: 10.1016/S0010-2180(03)00058-0
  • Y. Ju and B. Xu, Theoretical and experimental studies on mesoscale flame propagation and extinction, Proc. Combust. Inst. 30 (2005), pp. 2445–2453. doi: 10.1016/j.proci.2004.08.234
  • I. Schoegl and J.L. Ellzey, Superadiabatic combustion in conducting tubes and heat exchangers of finite length, Combust. Flame. 151 (2007), pp. 142–159. doi: 10.1016/j.combustflame.2007.01.009
  • D. Lee and K. Maruta, Heat recirculation effects on flame propagation and flame structure in a mesoscale tube, Combust. Theory Model. 16 (2012), pp. 507–536. doi: 10.1080/13647830.2011.638400
  • A. Aldushin and S. Kasparyan, Stability of stationary filtrational combustion waves, Combust. Explos. Shock Waves 17 (1981), pp. 615–625. doi: 10.1007/BF00784250
  • V.S. Babkin, Filtrational combustion of gases. Present state of affairs and prospects, Pure Appl. Chem. 65 (1993), pp. 335–344. doi: 10.1351/pac199365020335
  • S. Zhdanok, L.A. Kennedy, and G. Koester, Superadiabatic combustion of methane air mixtures under filtration in a packed bed, Combust. Flame. 100 (1995), pp. 221–231. doi: 10.1016/0010-2180(94)00064-Y
  • V. Zamashchikov, An investigation of gas combustion in a narrow tube, Combust. Sci. Technol. 166 (2001), pp. 1–14. doi: 10.1080/00102200108907817
  • V. Bubnovich, S. Zhdanok, and K. Dobrego, Analytical study of the combustion waves propagation under filtration of methane–air mixture in a packed bed, Int. J. Heat. Mass. Transf. 49 (2006), pp. 2578–2586. doi: 10.1016/j.ijheatmasstransfer.2006.01.019
  • H. Yang, S. Minaev, E. Geynce, H. Nakamura, and K. Maruta, Filtration combustion of methane in high-porosity micro-fibrous media, Combust. Sci. Technol. 181 (2009), pp. 654–669. doi: 10.1080/00102200802646748
  • F.A. Williams, Combustion theory, CRC Press, Boca Raton, Florida, 2018.
  • A. Mohamad, 11 – combustion in porous media: Fundamentals and applications, in Transport Phenomena in Porous Media III, D. Ingham and I. Pop, eds., Pergamon, Oxford, 2005, pp. 287–304.
  • C.K. LAW, Propagation, structure, and limit phenomena of laminar flames at elevated pressures, Combust. Sci. Technol. 178 (2006), pp. 335–360. doi: 10.1080/00102200500290690
  • R.M. Corless, G.H. Gonnet, D.E. Hare, D.J. Jeffrey, and D.E. Knuth, On the lambert w function, Adv. Comput. Math. 5 (1996), pp. 329–359. doi: 10.1007/BF02124750
  • D.G. Goodwin, R.L. Speth, H.K. Moffat, and B.W. Weber, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (2018). Version 2.4.0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.