119
Views
0
CrossRef citations to date
0
Altmetric
Articles

A derivation of temperature-based energy equation for LES of isochoric turbulent combustion with FDSGS model

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1324-1351 | Received 27 Nov 2020, Accepted 26 Aug 2021, Published online: 17 Sep 2021

References

  • N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, UK, 2000.
  • H. Pitsch, A consistent level set formulation for large-eddy simulation of premixed turbulent combustion, Combust. Flame 143 (2005), pp. 587–598.
  • V.A. Sabel'nikov and A.N. Lipatnikov, Rigorous derivation of an unclosed mean G-Equation for statistically 1D premixed turbulent flames, Int. J. Spray Combustion Dyn. 2 (2010), pp. 301–323.
  • G. Damköler, Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemischen, Z. Electorche 47 (1947), pp. 601–626.
  • M. Boger, D. Veynante, H. Boughanem and A. Trouvé, Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion, Symp. (Int.) Combust. 27 (1998), pp. 917–925.
  • F. Charlette, C. Meneveau and D. Veynante, A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests, Combust. Flame 131 (2002), pp. 159–180.
  • P. Flohr and H. Pitsch, A turbulent flame speed closure model for LES of industrial burner flows, Proceedings of the Summer Program, Center for Turbulence Research, Stanford University, 2000.
  • H. Pitsch and L. Duchamp de Lageneste, Large-eddy simulation of premixed turbulent combustion using a level-set approach, Proc. Combust. Inst. 29 (2002), pp. 2001–2008.
  • I. Yoshikawa, Y.S. Shim, Y. Nada, M. Tanahashi and T. Miyauchi, A dynamic SGS combustion model based on fractal characteristics of turbulent premixed flames, Proc. Combust. Inst. 34 (2013), pp. 1373–1381.
  • O. Colin, F. Ducros, D. Veynante and T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion, Phys. Fluids 12 (2000), pp. 1843–1863.
  • C. Fureby, A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion, Proc. Combust. Inst. 30 (2005), pp. 593–601.
  • N. Chakraborty and M. Klein, A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation, Phys. Fluids 20 (2008), p. 085108.
  • O. Chatakonda, E.R. Hawkes, M.J. Brear, J.H. Chen, E. Knudsen and H. Pitsch, Modeling of the wrinkling of premixed turbulent flames in the thin reaction zones regime for large eddy simulation, Proceedings of the Summer Program, Center for Turbulence Research, Stanford University, 2010.
  • K. Hiraoka, Y. Minamoto, M. Shimura, Y. Naka, N. Fukushima and M. Tanahashi, A fractal dynamic SGS combustion model for large eddy simulation of turbulent premixed flames, Comb. Sci. Technol.188 (2016), pp. 1472–1495.
  • Y. Minamoto, N. Fukushima, M. Tanahashi, T. Miyauchi, T.D. Dunstan and N. Swaminathan, Effect of flow-geometry on turbulence-scalar interaction in premixed flames, Phys. Fluids 23 (2011), p. 125107.
  • T. Miyauchi, M. Tanahashi and G. Feng, Fractal characteristics of turbulent diffusion flames, Comb. Sci. Technol. 96 (1994), pp. 135–154.
  • Y. Shim, S. Tanaka, M. Tanahashi and T. Miyauchi, Local structure and fractal characteristics of h2-air turbulent premixed flame, Proc. Combust. Inst. 33 (2011), pp. 1455–1462.
  • M. Tanahashi, S. Iwase and T. Miyauchi, Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer, J. Turbul. 2 (2001), pp. 1–18.
  • B. Yenerdag, Y. Minamoto, Y. Naka, M. Shimura and M. Tanahashi, Flame propagation and heat transfer characteristics of a hydrogen-air premixed flame in a constant volume vessel, Int. J. Hydrogen Energ. 41 (2016), pp. 9679–9689.
  • E. Gutheil, G. Balakrishnan and F.A. Williams, Structure and Extinction of Hydrogen-Air Diffusion Flames, in Lecture Notes in Physics: Reduced kinetic mechanisms for applications in combustion systems, N. Peters, B. Rogg, eds, Springer Verlag, New York, 1993, pp. 177–195.
  • R.J. Kee, G. Dixon-Lewis, J. Warnatz, M.E. Coltrin, J.A. Miller and H.K. Moffat, A FORTRAN Computer Code Package for The Evaluation of Gas-Phase, Multicomponent Transport Properties, Tech. Rep. SAND-86-8246, Sandia National Laboratories, Livermore, CA, USA, 1996.
  • R.J. Kee, F.M. Rupley and J.A. Miller, CHEMKIN-II: A FORTRAN chemical kinetics package for the analysis of gas phase chemical kinetics, Tech. Rep. SAND-89-8009, Sandia National Laboratories, Livermore, CA, USA, 1989.
  • P.N. Brown, G.D. Byrne and A.C. Hindmarsh, VODE: a variable-coefficient ODE solver, SIAM J. Sci. Stat. Comput. 10 (1989), pp. 1038–1051.
  • M. Tanahashi, T. Miyauchi and J. Ikeda, Scaling law of coherent fine scale structure in homogeneous isotropic turbulence. Proceedings of 11th symposium Turbulence Shear Flows, Vol. 1 (1997), pp. 4-17–4-22.
  • T.J. Poinsot and S.K. Lelef, Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys. 101 (1992), pp. 104–129.
  • M. Baum, T. Poinsot and D. Thévenin, Accurate boundary conditions for multicomponent reactive flows, J. Comput. Phys. 116 (1995), pp. 247–261.
  • K. Hiraoka, Y. Naka, M. Shimura, Y. Minamoto, N. Fukushima, M. Tanahashi and T. Miyauchi, Evaluations of SGS combustion, scalar flux and stress models in a turbulent jet premixed flame, Flow, Turbulence Combust. 97 (2016), pp. 1147–1164.
  • R.A. Clark, J.H. Ferziger and W.C. Reynolds, Evaluation of subgrid-scale models using an accurately simulated turbulent flow, J. Fluid Mech. 91 (1979), pp. 1–16.
  • Y. Huai, A. Sadiki, S. Pfadler, M. Loffler, F. Beyrau, A. Leipertz and F. Dinkelacker, Experimental Assessment of Scalar Flux Models for Large Eddy Simulations of Non-Reacting Flows, in Proc. Int. Symp. Turbulence, Heat Mass Transf., 2006, pp. 263–266.
  • J. Smagorinsky, General circulation experiments with primitive equation I. The basic experiment, Mon. Weather Rev. 91 (1963), pp. 99–164.
  • V.L. Zimont and A.N. Lipatnikov, A numerical model of premixed turbulent combustion of gases, Chem. Phys. Rep. 14 (1995), pp. 993–1025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.