291
Views
2
CrossRef citations to date
0
Altmetric
Articles

Assessment of optimal reaction progress variable characteristics for partially premixed flames

, &
Pages 797-830 | Received 21 Sep 2021, Accepted 19 Apr 2022, Published online: 19 May 2022

References

  • N. Peters, Turbulent Combustion (Cambridge Monographs on Mechanics). Cambridge: Cambridge University Press, 2000. doi:https://doi.org/10.1017/CBO9780511612701.
  • P. Domingo, L. Vervisch, and D. Veynante, Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152 (2008), pp. 415–432.
  • S. Delhaye, L.M.T. Somers, J.A. Van Oijen, and L.P.H. De Goey, Incorporating unsteady flow-effects beyond the extinction limit in flamelet-generated manifolds. Proc. Combust. Inst. 32(I) (2009), pp. 1051–1058.
  • J.A.V. Oijen and L.P.H.D. Goey, Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161 (2000), pp. 113–137.
  • J.A.V. Oijen, A. Donini, R.J.M. Bastiaans, J.H.M.T. Boonkkamp, and L.P.H.D. Goey, State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Prog. Energy Combust. Sci. 57 (2016), pp. 30–74.
  • B. Fiorina, D. Veynante, and S. Candel, Modeling combustion chemistry in large eddy simulation of turbulent flames. Flow, Turbul. Combust. 94 (2015), pp. 3–42.
  • N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10 (1984), pp. 319–339.
  • K. Bray, P. Domingo, and L. Vervisch, Role of the progress variable in models for partially premixed turbulent combustion. Combust. Flame 141 (2005), pp. 431–437.
  • B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, and N. Darabiha, Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140 (2005), pp. 147–160.
  • A.W. Vreman, B.A. Albrecht, J.A. van Oijen, L.P.H. de Goey, and R.J.M. Bastiaans, Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153 (2008), pp. 394–416.
  • E. Knudsen and H. Pitsch, A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion. Combust. Flame 156 (2009), pp. 678–696.
  • P.D. Nguyen, L. Vervisch, V. Subramanian, and P. Domingo, Multidimensional flamelet-generated manifolds for partially premixed combustion. Combust. Flame 157 (2010), pp. 43–61.
  • L.M. Verhoeven, W.J.S. Ramaekers, J.A.V. Oijen, and L.P.H.D. Goey, Modeling non-premixed laminar co-flow flames using flamelet-generated manifolds. Combust. Flame 159 (2012), pp. 230–241.
  • D. Bradley, L.K. Kwa, A.K.C. Lau, M. Missaghi, and S.B. Chin, Laminar flamelet modeling of recirculating premixed methane and propane-air combustion. Combust. Flame 71 (1988), pp. 109–122.
  • U. Maas and S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88 (1992), pp. 239–264.
  • M. Ihme, L. Shunn, and J. Zhang, Regularization of reaction progress variable for application to flamelet-based combustion models. J. Comput. Phys. 231 (2012), pp. 7715–7721.
  • Y.-s. Niu, L. Vervisch, and P. Dinh, An optimization-based approach to detailed chemistry tabulation: automated progress variable definition. Combust. Flame 160 (2013), pp. 776–785.
  • H. Atoof and M.D. Emami, Numerical simulation of laminar premixed CH4/air flame by flamelet-generated manifolds: A sensitivity analysis on the effects of progress variables. J. Taiwan Inst. Chem. Eng. 60 (2016), pp. 287–293.
  • J.A.V. Oijen and L.P.H. de Goey, A numerical study of confined triple flames using a flamelet-generated manifold. Combust. Theor. Model. 8 (2004), pp. 141–163.
  • M. Chrigui, A.R. Masri, A. Sadiki, and J. Janicka, Large eddy simulation of a polydisperse ethanol spray flame. Flow, Turbul. Combust. 90 (2013), pp. 813–832.
  • A. Najafi-Yazdi, B. Cuenot, and L. Mongeau, Systematic definition of progress variables and intrinsically low-dimensional, flamelet generated manifolds for chemistry tabulation. Combust. Flame 159 (2012), pp. 1197–1204.
  • E. Abtahizadeh, P. De Goey, and J. Van Oijen, Development of a novel flamelet-based model to include preferential diffusion effects in autoignition of CH4/H2 flames. Combust. Flame 162 (2015), pp. 4358–4369.
  • U. Prüfert, S. Hartl, F. Hunger, D. Messig, M. Eiermann, and C. Hasse, A constrained control approach for the automated choice of an optimal progress variable for chemistry tabulation. Flow, Turbul. Combust. 94 (2015), pp. 593–617.
  • A. Vasavan, P. de Goey, and J. van Oijen, A novel method to automate FGM progress variable with application to igniting combustion systems. Combust. Theor. Model. 24 (2020), pp. 221–244.
  • A. Scholtissek, P. Domingo, L. Vervisch, and C. Hasse, A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets. Proc. Combust. Inst. 37 (2019), pp. 1529–1536.
  • P. Saxena and F.A. Williams, Numerical and experimental studies of ethanol flames. Proc. Combust. Inst. 31(I) (2007), pp. 1149–1156.
  • R.W. Bilger, S.H. Stårner, and R.J. Kee, On reduced mechanisms for methane □ air combustion in nonpremixed flames. Combust. Flame 80(2) (1990), pp. 135–149.
  • P.K. Jha and C.P.T. Groth, Tabulated chemistry approaches for laminar flames: evaluation of flame-prolongation of ILDM and flamelet methods. Combust. Theor. Model. 16 (2012), pp. 31–57.
  • B. Franzelli, A. Vié, and M. Ihme, On the generalisation of the mixture fraction to a monotonic mixing-describing variable for the flamelet formulation of spray flames. Combust. Theor. Model. 19 (2015), pp. 773–806.
  • D.E. Goldberg, Genetic algorithms in search, optimization and machine learning, Addison-Wesley Longman Publishing Co. Inc., Boston, 1989.
  • F. Chitgarha and A. Mardani, Assessment of Steady and Unsteady Flamelet Models for MILD Combustion Modeling. Int. J. Hydrogen Energy 43 (2018), pp. 15551–15563.
  • H. Pitsch. FlameMaster: A c++ computer program for O-D Combustion and 1-D laminar flame calculations [Online] Available: Available at https://www.itv.rwth-aachen.de/downloads/flamemaster/.
  • P. Deuflhard, A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math. 22 (1974), pp. 289–315.
  • A. Bhagatwala, J.H. Chen, and T. Lu, Direct numerical simulations of HCCI/SACI with ethanol. Combust. Flame 161 (2014), pp. 1826–1841.
  • D. Healy, N.S. Donato, C.J. Aul, E.L. Petersen, C.M. Zinner, G. Bourque, and H.J. Curran, n-Butane: ignition delay measurements at high pressure and detailed chemical kinetic simulations. Combust. Flame 157 (2010), pp. 1526–1539.
  • S.J. Klippenstein, L.B. Harding, P. Glarborg, and J.A. Miller, The role of NNH in NO formation and control. Combust. Flame 158 (2011), pp. 774–789.
  • A. Kazakov and M. Frenklach. Reduced reaction sets based on GRIMech1.2. http://www.me.berkeley.edu/drm/.
  • H. Pitsch and N. Peters, A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114 (1998), pp. 26–40.
  • W.K. Metcalfe, S.M. Burke, S.S. Ahmed, and H.J. Curran, A hierarchical and comparative kinetic modeling study of C1 − C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet. 45 (2013), pp. 638–675.
  • F.N. Egolfopoulos, D.X. Du, and C.K. Law, A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes. Symp. (Int.) Combust. 24 (1992), pp. 833–841.
  • A.R. Laich, E. Ninnemann, S. Neupane, R. Rahman, S. Barak, W. J. Pitz, S. S. Goldsborough, and S. S. Vasu, High-pressure shock tube study of ethanol oxidation: ignition delay time and CO time-history measurements. Combust. Flame 212 (2020), pp. 486–499.
  • N. Leplat, P. Dagaut, C. Togbé, and J. Vandooren, Numerical and experimental study of ethanol combustion and oxidation in laminar premixed flames and in jet-stirred reactor. Combust. Flame 158 (2011), pp. 705–725.
  • C. Lee, S. Vranckx, K. A. Heufer, S. V. Khomik, Y. Uygun, H. Olivier, and R. X. Fernandez, On the chemical kinetics of ethanol oxidation: shock tube, rapid compression machine and detailed modeling study. Z. Phys. Chem. 226 (2012), pp. 1–28.
  • S.M. Sarathy, P. Oßwald, N. Hansen, and K. Kohse-höinghaus, Alcohol combustion chemistry. Prog. Energy Combust. Sci. 44 (2014), pp. 40–102.
  • B. Fiorina, R. Baron, O. Gicquel, D. Thevenin, S. Carpentier, and N. Darabiha, Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theor. Model. 7 (2003), pp. 449–470.
  • H. Bongers, J.A. Van Oijen, L.M.T. Somers, and L.P.H. De Goey, The flamelet generated manifold method to steady planar partially premixed counterflow flames. Combust. Sci. Technol. 177 (2005), pp. 2373–2393.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.