144
Views
1
CrossRef citations to date
0
Altmetric
Articles

Consistent submodel coupling in hybrid particle/finite volume algorithms for zone-adaptive modelling of turbulent reactive flows

ORCID Icon, , , , &
Pages 1159-1184 | Received 10 Mar 2022, Accepted 28 Sep 2022, Published online: 12 Oct 2022

References

  • S.B. Pope, Computations of turbulent combustion: Progress and challenges. Proc. Combust. Inst. 23 (1991), pp. 591–612.
  • S.B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6 (2004), p. 35.
  • C.K. Law, Combustion Physics, Cambridge University Press, New York, 2006.
  • T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, Edwards, Philadelphia, PA, 2005.
  • D.B. Spalding, Mixing and chemical reaction in steady confined turbulent flames. Proc. Combust. Inst. 13 (1971), pp. 649–657.
  • B.F. Magnussen and B.H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Combust. Inst. 16 (1977), pp. 719–729.
  • O. Colin, F. Ducros, D. Veynante and T. Poinsot, A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12 (2000), pp. 1843–1863.
  • S.B. Pope, PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11 (1985), pp. 119–192.
  • D.C. Haworth, Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36 (2010), pp. 168–259.
  • F.A. Jaberi, P.J. Colucci, S. James, P. Givi and S.B. Pope, Filtered mass density function for large-eddy simulation of turbulent reacting flows. J. Fluid Mech. 401 (1999), pp. 85–121.
  • P. Givi, Filtered density function for subgrid scale modeling of turbulent combustion. AIAA J. 44 (2006), pp. 16–23.
  • H. Wang, P. Zhang and J. Tao, Examination of probability distribution of mixture fraction in LES/FDF modelling of a turbulent partially premixed jet flame. Combust. Theory Model. 26 (2022), pp. 320–337.
  • T. Yang, Y. Yin, H. Zhou and Z. Ren, Review of Lagrangian stochastic models for turbulent combustion. Acta Mech. Sin. 37 (2021), pp. 1467–1488.
  • H. Wu, Y.C. See, Q. Wang and M. Ihme, A Pareto-efficient combustion framework with submodel assignment for predicting complex flame configurations. Combust. Flame 162 (2015), pp. 4208–4230.
  • H. Wu, P.C. Ma, T. Jaravel and M. Ihme, Pareto-efficient combustion modeling for improved CO-emission prediction in LES of a piloted turbulent dimethyl ether jet flame. Proc. Combust. Inst. 37 (2019), pp. 2267–2276.
  • Q. Douasbin, M. Ihme and C. Arndt, Pareto-efficient combustion framework for predicting transient ignition dynamics in turbulent flames: Application to a pulsed jet-in-hot-coflow flame. Combust. Flame 223 (2021), pp. 153–165.
  • C. Xu, M.M. Ameen, S. Som, J.H. Chen, Z. Ren and T. Lu, Dynamic adaptive combustion modeling of spray flames based on chemical explosive mode analysis. Combust. Flame 195 (2018), pp. 30–39.
  • M. Rieth, J.Y. Chen, S. Menon and A.M. Kempf, A hybrid flamelet finite-rate chemistry approach for efficient LES with a transported FDF. Combust. Flame 199 (2019), pp. 183–193.
  • S. Meares and A.R. Masri, A modified piloted burner for stabilizing turbulent flames of inhomogeneous mixtures. Combust. Flame 161 (2014), pp. 484–495.
  • Code_Saturne. EDF, France; software available at https://www.code-saturne.org/cms/web/.
  • F. Archambeau, N. Méchitoua and M. Sakiz, Code Saturne: A finite volume code for the computation of turbulent incompressible flows – Industrial applications. Int. J. Finite 1 (2004), pp. 1–62.
  • J.P. Vandoormaal and G.D. Raithby, Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Tranf. 7 (1984), pp. 147–163.
  • B. Liu, Y. Wu, K. Cui, H. Zhang, K. Matsumoto and K. Takeno, Improvement of ignition prediction for turbulent pulverized coal combustion with EDC extinction model. Fuel 181 (2016), pp. 1265–1272.
  • S.R. Shabanian, P.R. Medwell, M. Rahimi, A. Frassoldati and A. Cuoci, Kinetic and fluid dynamic modeling of ethylene jet flames in diluted and heated oxidant stream combustion conditions. Appl. Therm. Eng. 52 (2013), pp. 538–554.
  • A. De and A. Dongre, Assessment of turbulence-chemistry interaction models in MILD combustion regime. Flow Turbul. Combust. 94 (2015), pp. 439–478.
  • L. Lu and S.B. Pope, An improved algorithm for in situ adaptive tabulation. J. Comput. Phys. 228 (2009), pp. 361–386.
  • S.B. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation. Combust. Theory Model. 1 (1997), pp. 41–63.
  • J. Villermaux and J.C. Devillon, Représentation de la coalescence et de la redispersion des domaines de ségrégation dans un fluide par un modèle d'interaction phénoménologique, Proceedings of the Second International Symposium on Chemical Reaction Engineering, Amsterdam, Netherlands, 1972.
  • R.L. Curl, Dispersed phase mixing. 1. Theory and effects in simple reactors. AICHE J. 9 (1963), pp. 175–181.
  • C. Dopazo, Relaxation of initial probability density functions in the turbulent convection of scalar fields. Phys. Fluids 22 (1979), pp. 20–30.
  • J. Janicka, W. Kolbe and W. Kollmann, Closure of the transport-equation for the probability density-function of turbulent scalar fields. J. Non-Equilib. Thermodyn. 4 (1979), pp. 47–66.
  • S. Subramaniam and S.B. Pope, A mixing model for turbulent reactive flows based on Euclidean minimum spanning trees. Combust. Flame 115 (1998), pp. 487–514.
  • Z. Ren, S. Subramaniam and S.B. Pope, Implementation of the EMST mixing model, 2002. Available at http://tcg.mae.cornell.edu/emst.
  • Z. Ren and S.B. Pope, An investigation of the performance of turbulent mixing models. Combust. Flame 136 (2004), pp. 208–216.
  • T. Yang, Q. Xie, H. Zhou and Z. Ren, On the modeling of scalar mixing timescale in filtered density function simulation of turbulent premixed flames. Phys. Fluids 32 (2020), p. 115130.
  • J. Liu and H. Wang, Machine learning assisted modeling of mixing timescale for LES/PDF of high-Karlovitz turbulent premixed combustion. Combust. Flame 238 (2022), p. 111895.
  • H. Zhou, Z. Ren, D.H. Rowinski and S.B. Pope, Filtered density function simulations of a near-limit turbulent lean premixed flame. J. Propul. Power 36 (2020), p. 381–399.
  • A.Y. Klimenko, Lagrangian particles with mixing. II. Sparse-Lagrangian methods in application for turbulent reacting flows. Phys. Fluids 21 (2009), p. 065102.
  • Y. Ge, M.J. Cleary and A.Y. Klimenko, A comparative study of Sandia flame series (D-F) using sparse-Lagrangian MMC modelling. Proc. Combust. Inst. 34 (2013), pp. 1325–1332.
  • M. Muradoglu, S.B. Pope and D.A. Caughey, The hybrid method for the PDF equations of turbulent reactive flows: Consistency conditions and correction algorithms. J. Comput. Phys. 172 (2001), pp. 841–878.
  • P. Jenny, S.B. Pope, M. Muradoglu and D.A. Caughey, A hybrid algorithm for the joint PDF equation of turbulent reactive flows. J. Comput. Phys. 166 (2001), pp. 218–252.
  • P.P. Popov, H. Wang and S.B. Pope, Specific volume coupling and convergence properties in hybrid particle/finite volume algorithms for turbulent reactive flows. J. Comput. Phys. 294 (2015), pp. 110–126.
  • Y. Mizobuchi, S. Tachibana, J. Shinio, S. Ogawa and T. Takeno, A numerical analysis of the structure of a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 29 (2002), pp. 2009–2015.
  • B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier and N. Darabiha, Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140 (2005), pp. 147–160.
  • E. Knudsen and H. Pitsch, A general flamelet transformation useful for distinguishing between premixed and non-premixed modes of combustion. Combust. Flame 156 (2009), pp. 678–696.
  • T.F. Lu, C.S. Yoo, J.H. Chen and C.K. Law, Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: A chemical explosive mode analysis. J. Fluid. Mech. 652 (2010), pp. 45–64.
  • S. Hartl, D. Geyer, A. Dreizler, G. Magnotti, R.S. Barlow and C. Hasse, Regime identification from Raman/Rayleigh line measurements in partially premixed flames. Combust. Flame 189 (2018), pp. 126–141.
  • G. Strang, On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5 (1968), pp. 506–517.
  • G.I. Marchuk, On the theory of the splitting-up method, in Proceedings of the Second Symposium on Numerical Solution of Partial Differential Equations, SVNSPADE, B. Hubbard, ed., Academic Press, Maryland, 1971, pp. 469–500.
  • Y.Z. Zhang and D.C. Haworth, A general mass consistency algorithm for hybrid particle/finite-volume PDF methods. J. Comput. Phys. 194 (2004), pp. 156–193.
  • H. Turkeri, S.B. Pope and M. Muradoglu, A LES/PDF simulator on block-structured meshes. Combust. Theory Model. 23 (2019), pp. 1–41.
  • A.Y. Klimenko, Lagrangian particles with mixing. I. Simulating scalar transport. Phys. Fluids 21 (2009), p. 065101.
  • C.T. Bowman, R.K. Hanson, D.F. Davidson, W.C. Gardiner, V.V. Lissianski, G.P. Smith, D.M. Golden, M. Frenklach and M. Goldenberg, GRI-Mech 2.11, 1995. Available at http://www.me.berkeley.edu/gri_mech/.
  • M. Muradoglu, P. Jenny, S.B. Pope and D.A. Caughey, A consistent hybrid finite-volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 154 (1999), pp. 342–371.
  • J. Xu and S.B. Pope, Assessment of numerical accuracy of PDF Monte Carlo methods for turbulent reacting flows. J. Comput. Phys. 152 (1999), pp. 192–230.
  • S.B. Pope, Particle method for turbulent flows: Integration of stochastic model equations. J. Comput. Phys. 117 (1995), pp. 332–349.
  • D.H. Rowinski and S.B. Pope, PDF calculations of piloted premixed jet flames. Combust. Theory Model. 15 (2011), pp. 245–266.
  • D.H. Rowinski and S.B. Pope, Computational study of lean premixed turbulent flames using RANS-PDF and LES-PDF methods. Combust. Theory Model. 17 (2013), pp. 610–656.
  • H. Zhou, S. Li, Z. Ren and D.H. Rowinski, Investigation of mixing model performance in transported PDF calculations of turbulent lean premixed jet flames through Lagrangian statistics and sensitivity analysis. Combust. Flame 181 (2017), pp. 136–148.
  • H. Zhou, Z. Ren, M. Kuron, T. Lu and J.H. Chen, Investigation of reactive scalar mixing in transported PDF simulations of turbulent premixed methane-air Bunsen flames. Flow Turbul. Combust. 103 (2019), pp. 667–697.
  • R.R. Tirunagari and S.B. Pope, LES/PDF for premixed combustion in the DNS limit. Combust. Theory Model. 20 (2016), pp. 834–865.
  • T.G. Drozda, M.R.H. Sheikhi, C.K. Madnia and P. Givi, Developments in formulation and application of the filtered density function. Flow Turbul. Combust. 78 (2007), pp. 35–67.
  • S. Sammak, Z. Ren and P. Givi, Modern developments in filtered density function, in Modeling and Simulation of Turbulent Mixing and Reaction: For Power, Energy and Flight, D. Livescu, A.G. Nouri, F. Battaglia, P. Givi, eds., Springer, Singapore, 2020, pp. 181–200.
  • H. Zhou, T. Yang and Z. Ren, Differential diffusion modeling in LES/FDF simulations of turbulent flames. AIAA J. 57 (2019), pp. 3206–3212.
  • T. Yang, H. Zhou, Y. Yin and Z. Ren, Zone-adaptive modeling of turbulent flames with multiple chemical mechanisms. Proc. Combust. Inst. 39 (2022), in press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.