239
Views
0
CrossRef citations to date
0
Altmetric
Articles

PeleLM-FDF large eddy simulator of turbulent reacting flows

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-18 | Received 17 Jan 2022, Accepted 10 Oct 2022, Published online: 14 Nov 2022

References

  • Colucci P.J., Jaberi F.A., Givi P., and Pope S.B., Filtered density function for large eddy simulation of turbulent reacting flows, Phys. Fluids 10 (1998), pp. 499–515.
  • Jaberi F.A., Colucci P.J., James S., Givi P., and Pope S.B., Filtered mass density function for large-eddy simulation of turbulent reacting flows, J. Fluid Mech. 401 (1999), pp. 85–121.
  • Ansari N., Goldin G.M., Sheikhi M.R.H., and Givi P., Filtered density function simulator on unstructured meshes, J. Comput. Phys. 230 (2011), pp. 7132–7150.
  • Ansari N., Pisciuneri P.H., Strakey P.A., and Givi P., Scalar-filtered mass-density-function simulation of swirling reacting flows on unstructured grids, AIAA J. 50 (2012), pp. 2476–2482.
  • Ansari N., Strakey P.A., Goldin G.M., and Givi P., Filtered density function simulation of a realistic swirled combustor, Proc. Combust. Inst. 35 (2015), pp. 1433–1442.
  • Castro L.P., Pinheiro A.P., Vilela V., Magalhães G.M., Serfaty R., and Vedovotto J.M., Implementation of a hybrid Lagrangian filtered density function–large eddy simulation methodology in a dynamic adaptive mesh refinement environment, Phys. Fluids 33 (2021), p. 045126.
  • Cleary M.J., Klimenko A.Y., Janicka J., and Pfitzner M., A sparse-Lagrangian multiple mapping conditioning model for turbulent diffusion flames, Proc. Combust. Inst. 32 (2009), pp. 1499–1507.
  • Damasceno M.M.R., de Freitas Santos J.G., and Vedovoto J.M., Simulation of turbulent reactive flows using a FDF methodology – advances in particle density control for normalized variables, Comput. Fluids 170 (2018), pp. 128–140.
  • de Almeida Y.P. and Navarro-Martinez S., Large eddy simulation of a supersonic lifted flame using the Eulerian stochastic fields method, Proc. Combust. Inst. 37 (2019), pp. 3693–3701.
  • Inkarbekov M., Aitzhan A., Kaltayev A., and Sammak S., A GPU-accelerated filtered density function simulator of turbulent reacting flows, Int. J. Comput. Fluid Dyn. 34 (2020), pp. 381–396.
  • Komperda J., Ghiasi Z., Li D., Peyvan A., Jaberi F., and Mashayek F., A hybrid discontinuous spectral element method and filtered mass density function solver for turbulent reacting flows, Numer. Heat Transfer, Part B 78 (2020), pp. 1–29.
  • Mejía J.M., Chejne F., Molina A., and Sadiki A., Scalar mixing study at high-schmidt regime in a turbulent jet flow using large-eddy simulation/filtered density function approach, J. Fluids Eng. 138 (2016), p. 021205.
  • Minier J., Chibbaro S., and Pope S.B., Guidelines for the formulation of Lagrangian stochastic models for particle simulations of single-phase and dispersed two-phase turbulent flows, Phys. Fluids 26 (2014), p. 113303.
  • Natarajan H., Popov P., and Jacobs G., A high-order semi-Lagrangian method for the consistent Monte-Carlo solution of stochastic Lagrangian drift–diffusion models coupled with Eulerian discontinuous spectral element method, Comput. Methods Appl. Mech. Eng. 384 (2021), p. 114001.
  • Nik M.B., Yilmaz S.L., Givi P., Sheikhi M.R.H., and Pope S.B., Simulation of Sandia Flame D using velocity-scalar filtered density function, AIAA J. 48 (2010), pp. 1513–1522.
  • Nik M.B., Yilmaz S.L., Sheikhi M.R.H., and Givi P., Grid resolution effects on VSFMDF/LES, Flow Turbul. Combust. 85 (2010), pp. 677–688.
  • Nouri A.G., Givi P., and Livescu D., Modeling and simulation of turbulent nuclear flames in type IA supernovae, Prog. Aerosp. Sci. 108 (2019), pp. 156–179.
  • Nouri A.G., Nik M.B., Givi P., Livescu D., and Pope S.B., Self-contained filtered density function, Phys. Rev. Fluids 2 (2017), p. 094603.
  • Nouri A.G., Sammak S., Pisciuneri P.H., and Givi P., Langevin simulation of turbulent combustion, in Combustion for Power Generation and Transportation, A.K. Agarwal, S. De, A. Pandey, and A.P. Singh, eds., Chap. 3, Springer, Singapore, 2017, pp. 39–53.
  • Pisciuneri P.H., Yilmaz S.L., Strakey P.A., and Givi P., An irregularly portioned FDF simulator, SIAM J. Sci. Comput. 35 (2013), pp. C438–C452.
  • Sammak S., Aitzhan A., Givi P., and Madnia C.K., High fidelity spectral-FDF-LES of turbulent scalar mixing, Combust. Sci. Technol. 192 (2020), pp. 1219–1232.
  • Sammak S., Brazell M.J., Givi P., and Mavriplis D.J., A hybrid DG-Monte Carlo FDF simulator, Comput. Fluids 140 (2016), pp. 158–166.
  • Sammak S., Nouri A.G., Brazell M.J., Mavriplis D.J., and Givi P., Discontinuous Galerkin-Monte Carlo solver for large Eddy simulation of compressible turbulent flows, in 55th AIAA Aerospace Sciences Meeting, AIAA, Grapevine, TA, 2017, p. 0982.
  • Sewerin F. and Rigopoulos S., An LES-PBE-PDF approach for predicting the soot particle size distribution in turbulent flames, Combust. Flame 189 (2018), pp. 62–76.
  • Turkeri H., Pope S.B., and Muradoglu M., A LES/PDF simulator on block-structured meshes, Combust. Theory Model. 23 (2019), pp. 1–41.
  • Turkeri H., Zhao X., Pope S.B., and Muradoglu M., Large eddy simulation/probability density function simulations of the Cambridge turbulent stratified flame series, Combust. Flame 199 (2019), pp. 24–45.
  • Yilmaz S.L., Nik M.B., Sheikhi M.R.H., Strakey P.A., and Givi P., An irregularly portioned Lagrangian Monte Carlo method for turbulent flow simulation, J. Sci. Comput. 47 (2011), pp. 109–125.
  • Zhang L., Liang J., Sun M., Wang H., and Yang Y., An energy-consistency-preserving large eddy simulation-scalar filtered mass density function (LES-SFMDF) method for high-speed flows, Combust. Theor. Model. 22 (2018), pp. 1–37.
  • Zhou H., Yang T., and Ren Z., Differential diffusion modeling in LES/FDF simulations of turbulent flames, AIAA J. 57 (2019), pp. 3206–3212.
  • Chibbaro S., Marchioli C., Salvetti M.V., and Soldati A., Particle tracking in LES flow fields: Conditional Lagrangian statistics of filtering error, J. Turbul. 15 (2014), pp. 22–33.
  • Ge Y., Cleary M.J., and Klimenko A.Y., A comparative study of Sandia Flame series (D-F) using sparse-Lagrangian MMC modelling, Proc. Combust. Inst. 34 (2013), pp. 1325–1332.
  • Klimenko A.Y. and Cleary M.J., Convergence to a model in sparse-Lagrangian FDF simulations, Flow Turbul. Combust. 85 (2010), pp. 567–591.
  • Tirunagari R.R. and Pope S.B., LES/PDF for premixed combustion in the DNS limit, Combust. Theor. Model. 20 (2016), pp. 834–865.
  • Zhao X., Kolla H., Zhang P., Wu B., Calello S., and Najm H.N., A transported probability density function method to propagate chemistry uncertainty in reacting flow CFD, in 57th AIAA Aerospace Sciences Meeting, January 7–11, AIAA, San Diego, CA, 2019, pp. 1–12.
  • Zhou H., Li S., Ren Z., and Rowinski D.H., Investigation of mixing model performance in transported PDF calculations of turbulent lean premixed jet flames through Lagrangian statistics and sensitivity analysis, Combust. Flame 181 (2017), pp. 136–148.
  • Sammak S., Ren Z., and Givi P., Modern developments in filtered density function, in Modeling and Simulation of Turbulent Mixing and Reaction: For Power, Energy and Flight, D. Livescu, A.G. Nouri, F. Battaglia, and P. Givi, eds., Springer Singapore, Singapore, 2020, pp. 181–200.
  • Yang T., Yin Y., Zhou H., and Ren Z., Review of Lagrangian stochastic models for turbulent combustion, Acta Mech. Sin. 37 (2021), p. 1349.
  • Nonaka A., Day M.S., and Bell J.B., A conservative, thermodynamically consistent numerical approach for low mach number combustion. Part I: Single-level integration, Combust. Theor. Model. 22 (2018), pp. 156–184.
  • Ansari N., Jaberi F.A., Sheikhi M.R.H., and Givi P., Filtered density function as a modern CFD tool, in Engineering Applications of Computational Fluid Dynamics: Volume 1, A.R.S. Maher, ed., Chap. 1, International Energy and Environment Foundation, Najaf, 2011, pp. 1–22.
  • Bell J., AMR for low Mach number reacting flow, in Adaptive Mesh Refinement – Theory and Applications, T. Plewa, T. Linde, and V. Gregory Weirs, eds., Springer, Berlin, Heidelberg, 2005, pp. 203–221.
  • Zhang W., Almgren A., Beckner V., Bell J., Blaschke J., Chan C., Day M., Friesen B., Gott K., Graves D., Katz M., Myers A., Nguyen T., Nonaka A., Rosso M., Williams S., and Zingale M., AMReX: A framework for block-structured adaptive mesh refinement, J. Open Source Softw. 4 (2019), p. 1370.
  • Zhang W., Almgren A., Day M., Nguyen T., Shalf J., and Unat D., BoxLib with tiling: An adaptive mesh refinement software framework, SIAM J. Sci. Comput. 38 (2016), pp. S156–S172.
  • Almgren A.S., Bell J.B., Colella P., Howell L.H., and Welcome M.L., A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations, J. Comput. Phys. 142 (1998), pp. 1–46.
  • Bell J.B., Day M.S., Almgren A.S., Lijewski M.J., and Rendleman C.A., A parallel adaptive projection method for low mach number flows, Int. J. Numer. Meth. Fl 40 (2002), pp. 209–216.
  • Pember R.B., Howell L.H., Bell J.B., Colella P., Crutchfield W.Y., Fiveland W.A., and Jessee J.P., An adaptive projection method for unsteady, low-mach number combustion, Combust. Sci. Technol.140 (1998), pp. 123–168.
  • Esclapez L., Ricchiuti V., Bell J.B., and Day M.S., A spectral deferred correction strategy for low Mach number reacting flows subject to electric fields, Combust. Theor. Model. 24 (2020), pp. 194–220.
  • Hamon F.P., Day M.S., and Minion M.L., Concurrent implicit spectral deferred correction scheme for low-Mach number combustion with detailed chemistry, Combust. Theor. Model. 23 (2019), pp. 279–309.
  • Nonaka A., Bell J.B., Day M.S., Gilet C., Almgren A.S., and Minion M.L., A deferred correction coupling strategy for low mach number flow with complex chemistry, Combust. Theor. Model. 16 (2012), pp. 1053–1088.
  • Pazner W.E., Nonaka A., Bell J.B., Day M.S., and Minion M.L., A high-order spectral deferred correction strategy for low mach number flow with complex chemistry, Combust. Theor. Model. 20 (2016), pp. 521–547.
  • Dragojlovic Z., Najmabadi F., and Day M., An embedded boundary method for viscous, conducting compressible flow, J. Comput. Phys. 216 (2006), pp. 37–51.
  • Pember R., Almgren A., Crutchfield W., Howell L., Bell J., Colella P., and Beckner V., An embedded boundary method for the modeling of unsteady combustion in an industrial gas-fired furnace, in Fall Meeting of the Western States Section of the Combustion Institute, Combustion Institute, Stanford, CA, 1995, p. 10. https://www.osti.gov/biblio/195764.
  • Aspden A., Day M., and Bell J., Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics, Combust. Flame 166 (2016), pp. 266–283.
  • Aspden A.J., Day M.S., and Bell J.B., Towards the distributed burning regime in turbulent premixed flames, J. Fluid Mech. 871 (2019), pp. 1–21.
  • Dasgupta D., Sun W., Day M., Aspden A.J., and Lieuwen T., Analysis of chemical pathways and flame structure for n-dodecane/air turbulent premixed flames, Combust. Flame 207 (2019), pp. 36–50.
  • Dasgupta D., Sun W., Day M., and Lieuwen T., Effect of turbulence-chemistry interactions on chemical pathways for turbulent hydrogen-air premixed flames, Combust. Flame 176 (2017), pp. 191–201.
  • Wimer N.T., Day M.S., Lapointe C., Meehan M.A., Makowiecki A.S., Glusman J.F., Daily J.W., Rieker G.B., and Hamlington P.E., Numerical simulations of buoyancy-driven flows using adaptive mesh refinement: Structure and dynamics of a large-scale helium plume, Theor. Comp. Fluid Dyn. 35 (2021), pp. 61–91.
  • Madnia C.K., Jaberi F.A., and Givi P., Large eddy simulation of heat and mass transport in turbulent flows, in Handbook of Numerical Heat Transfer, W.J. Minkowycz, E.M. Sparrow, and J.Y. Murthy, eds., 2nd ed., Chap. 5, John Wiley & Sons, Inc., New York, 2006, pp. 167–190.
  • Williams F.A., Turbulent combustion, in The Mathematics of Combustion, J.D. Buckmaster, ed., Chap. 3, Frontiers in Applied Mathematics, SIAM, Philadelphia, PA, 1985, pp. 97–131.
  • Garnier E., Adams N., and Sagaut P., Large Eddy Simulation for Compressible Flows, Springer Science & Business Media, Dordrecht, 2009.
  • Smagorinsky J., General circulation experiments with the primitive equations. I. The basic experiment, Mon. Weather Rev. 91 (1963), pp. 99–164.
  • Vreman A.W., An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Phys. Fluids 16 (2004), pp. 3670–3681.
  • O'Brien E.E., The probability density function (PDF) approach to reacting turbulent flows, in Turbulent Reacting Flows, P. Libby and F. Williams, eds., Topics in Applied Physics Vol. 44, Chap. 5, Springer, Heidelberg, 1980, pp. 185–218.
  • Williams S., Lijewski M., Almgren A., Straalen B.V., Carson E., Knight N., and Demmel J., s-Step Krylov subspace methods as bottom solvers for geometric multigrid, in 2014 IEEE 28th International Parallel and Distributed Processing Symposium, IEEE, Phoenix, AZ, 2014, pp. 1149–1158.
  • Musser J., Almgren A.S., Fullmer W.D., Antepara O., Bell J.B., Blaschke J., Gott K., Myers A., Porcu R., Rangarajan D., Rosso M., Zhang W., and Syamlal M., MFIX-Exa: A path toward exascale CFD-DEM simulations, Int. J. High Perform. C. 36 (2021), pp. 40–58.
  • Day M.S. and Bell J.B., Numerical simulation of laminar reacting flows with complex chemistry, Combust. Theor. Model. 4 (2000), pp. 535–556.
  • Kloeden P.E., Platen E., and Schurz H., Numerical Solution of Stochastic Differential Equations Through Computer Experiments, 1st ed., Springer-Verlag, New York, 1994.
  • Zhang Y. and Haworth D., A general mass consistency algorithm for hybrid particle/finite-volume PDF methods, J. Comput. Phys. 194 (2004), pp. 156–193.
  • Turkeri H., A general purpose large-eddy simulation/probability density function simulator on block structured grids, Ph.D. diss., Koç University, Istanbul, Turkey, 2017.
  • Hawkes E.R., Sankaran R., Sutherland J.C., and Chen J.H., Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics, Proc. Combust. Inst. 31 (2007), pp. 1633–1640.
  • Punati N., Sutherland J.C., Kerstein A.R., Hawkes E.R., and Chen J.H., An evaluation of the one-dimensional turbulence model: Comparison with direct numerical simulations of CO/H2 jets with extinction and reignition, Proc. Combust. Inst. 33 (2011), pp. 1515–1522.
  • Sen B.A., Hawkes E.R., and Menon S., Large eddy simulation of extinction and reignition with artificial neural networks based chemical kinetics, Combust. Flame 157 (2010), pp. 566–578.
  • Vo S., Kronenburg A., Stein O.T., and Cleary M.J., MMC-LES of a syngas mixing layer using an anisotropic mixing time scale model, Combust. Flame 189 (2018), pp. 311–314.
  • Vo S., Stein O.T., Kronenburg A., and Cleary M.J., Assessment of mixing time scales for a sparse particle method, Combust. Flame 179 (2017), pp. 280–299.
  • Yang S., Ranjan R., Yang V., Sun W., and Menon S., Sensitivity of predictions to chemical kinetics models in a temporally evolving turbulent non-premixed flame, Combust. Flame 183 (2017), pp. 224–241.
  • Yang Y., Wang H., Pope S.B., and Chen J.H., Large-eddy simulation/probability density function modeling of a non-premixed CO/H2 temporally evolving jet flame, Proc. Combust. Inst. 34 (2013), pp. 1241–1249.
  • Germano M., A statistical formulation of dynamic model, Phys. Fluids 8 (1996), pp. 565–570.
  • Vaghefi N.S., Nik M.B., Pisciuneri P.H., and Madnia C.K., A Priori assessment of the subgrid scale viscous/scalar dissipation closures in compressible turbulence, J. Turbul. 14 (2013), pp. 43–61.
  • Bilger R.W., The structure of diffusion flames, Combust. Sci. Technol. 13 (1976), pp. 155–170.
  • Peters N., Turbulent combustion, Cambridge University Press, Cambridge, 2000.
  • Sheikhi M.R.H., Givi P., and Pope S.B., Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows, Phys. Fluids 19 (2007), p. 095106.
  • Givi P., Jou W.H., and Metcalfe R., Flame extinction in a temporally developing mixing layer, Symp. (Int.) Combust. 21 (1986), pp. 1251–1261.
  • Hawkes E., Sankaran R., and Chen J., Reignition dynamics in massively parallel direct numerical simulations of CO/H2 jet flames, in 16th Australasian Fluid Mechanics Conference. School of Engineering, The University of Queensland, Gold Coast, 2007. https://people.eng.unimelb.edu.au/imarusic/proceedings/16/Hawkes.pdf.
  • Hawthorne W.R., Weddell D.S., and Hottel H.C., Mixing and combustion in turbulent gas jets, Third Symp. Combustion Flame, Explosion Phenomena 3 (1948), pp. 266–288.
  • Givi P., Model-free simulations of turbulent reactive flows, Prog. Energy Combust. Sci. 15 (1989), pp. 1–107.
  • Givi P., Filtered density function for subgrid scale modeling of turbulent combustion, AIAA J. 44 (2006), pp. 16–23.
  • Haworth D.C., Progress in probability density function methods for turbulent reacting flows, Prog. Energy Combust. Sci. 36 (2010), pp. 168–259.
  • Miller R.S. and Foster J.W., Survey of turbulent combustion models for large eddy simulations of propulsive flowfields, AIAA J. 54 (2016), pp. 2930–2946.
  • Pope S.B., Small scales, many species and the manifold challenges of turbulent combustion, Proc. Combust. Inst. 34 (2013), pp. 1–31.
  • Gicquel L.Y.M., Givi P., Jaberi F.A., and Pope S.B., Velocity filtered density function for large eddy simulation of turbulent flows, Phys. Fluids 14 (2002), pp. 1196–1213.
  • Sheikhi M.R.H., Drozda T.G., Givi P., and Pope S.B., Velocity-scalar filtered density function for large eddy simulation of turbulent flows, Phys. Fluids 15 (2003), pp. 2321–2337.
  • Sheikhi M.R.H., Givi P., and Pope S.B., Frequency-velocity-scalar filtered mass density function for large eddy simulation of turbulent flows, Phys. Fluids 21 (2009), p. 075102.
  • Klimenko A.Y., Lagrangian particles with mixing. II. Sparse-Lagrangian methods in application for turbulent reacting flows, Phys. Fluids 21 (2009), p. 065102.
  • Wang H., Popov P.P., and Pope S.B., Weak second-order splitting schemes for Lagrangian Monte Carlo particle methods for the composition PDF/FDF transport equations, J. Comput. Phys. 229 (2010), pp. 1852–1878.
  • Popov P.P. and Pope S.B., Implicit and explicit schemes for mass consistency preservation in hybrid particle/finite-volume algorithms for turbulent reactive flows, J. Comput. Phys. 257 (2014), pp. 352–373.
  • Sitaraman H., Yellapantula S., Henry de Frahan M.T., Perry B., Rood J., Grout R., and Day M., Adaptive mesh based combustion simulations of direct fuel injection effects in a supersonic cavity flame-holder, Combust. Flame 232 (2021), p. 111531.
  • Drozda T.G., Sheikhi M.R.H., Madnia C.K., and Givi P., Developments in formulation and application of the filtered density function, Flow Turbul. Combust. 78 (2007), pp. 35–67.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.