149
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of slit pattern on the structure of premixed flames issuing from perforated burners in domestic condensing boilers

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 218-243 | Received 16 Feb 2022, Accepted 05 Dec 2022, Published online: 28 Dec 2022

References

  • European Commission, A hydrogen strategy for a climate-neutral Europe, 2020. Available at https://ec.europa.eu/energy/sites/ener/files.
  • G. Lo Basso , B. Nastasi, D. Astiaso Garcia, and F. Cumo, How to handle the hydrogen enriched natural gas blends in combustion efficiency measurement procedure of conventional and condensing boilers, Energy 123 (2017), pp. 615–636.
  • F. Schiro and A. Stoppato, Experimental investigation of emissions and flame stability for steel and metal fiber cylindrical premixed burners, Combustion Sci. Technol. 191 (2019), pp. 453–471.
  • S. Carpentier, P. Milin, N. Mostefaoui, P. Nitschke-Kowsky, J. Schweitzer Negar Sadegh, and O. Thibaut, Self-regulated gas boilers able to cope with gas quality variation state of the art and performances, Report, 2018. Available at https://www.gerg.eu/wp-content/uploads/2019/10.
  • D.T. Bălănescu and V.M. Homutescu, Experimental investigation on performance of a condensing boiler and economic evaluation in real operating conditions, Appl. Thermal Eng. 143 (2018), pp. 48–58.
  • X. Lin, H. Ma, C. Liu, J. Zhang, Y. Zhang, and Z. Miao, Experimental research on gas interchangeability indices for domestic fully premixed burners, Fuel 233 (2018), pp. 695–703.
  • R. Lamioni, P.E. Lapenna, L. Berger, K. Kleinheinz, A. Attili, H. Pitsch, and F. Creta, Pressure-induced hydrodynamic instability in premixed methane-air slot flames, Combustion Sci. Technol. 192 (2020), pp. 1998–2009.
  • T.H. Zhang, F.G. Liu, and X.Y. You, Optimization of gas mixing system of premixed burner based on cfd analysis, Energy Conversion Manage. 85 (2014), pp. 131–139.
  • D.F. Zhao, F.G. Liu, X.Y. You, R. Zhang, B.L. Zhang, and G.L. He, Optimization of a premixed cylindrical burner for low pollutant emission, Energy Conversion Manage. 99 (2015), pp. 151–160.
  • M.H. Saberi Moghaddam, M. Saei Moghaddam, and M. Khorramdel, Numerical study of geometric parameters effecting temperature and thermal efficiency in a premix multi-hole flat flame burner, Energy 125 (2017), pp. 654–662.
  • Z. Song, L. Wei, and Z. Wu, Effects of heat losses on flame shape and quenching of premixed flames in narrow channels, Combustion Sci. Technol. 180 (2007), pp. 264–278.
  • A. McIntosh and J.F. Clarke, Second order theory of unsteady burner-anchored flames with arbitrary lewis number, Combustion Sci. Technol. 38 (1984), pp. 161–196.
  • R. Rook, L. De Goey, L. Somers, K. Schreel, and R. Parchen, Response of burner-stabilized flat flames to acoustic perturbations, Combustion Theory Modell. 6 (2002), p. 223.
  • H.M. Altay, K.S. Kedia, R.L. Speth, and A.F. Ghoniem, Two-dimensional simulations of steady perforated-plate stabilized premixed flames, Combustion Theory Modell. 14 (2010), pp. 125–154.
  • H.d. Lange and L.d. Goey, Two-dimensional methane/air flame, Combustion Sci. Technol. 92 (1993), pp. 423–427.
  • K.S. Kedia and A.F. Ghoniem, Mechanisms of stabilization and blowoff of a premixed flame downstream of a heat-conducting perforated plate, Combust. Flame. 159 (2012), pp. 1055–1069.
  • E.V. Jithin, V.R. Kishore, and R.J. Varghese, Three-dimensional simulations of steady perforated-plate stabilized propane-air premixed flames, Energy Fuels 28 (2014), pp. 5415–5425.
  • S. Lee, J.M. Kim, S.M. Kum, and C.E. Lee, Suggestion on the simultaneous reduction method of co and nox in premixed flames for a compact heat exchanger, Energy. Fuels. 24 (2010), pp. 821–827.
  • J. Edacheri Veetil, B. Aravind, A. Mohammad, S. Kumar, and R.K. Velamati, Effect of hole pattern on the structure of small scale perorated plate burner flames, Fuel 216 (2018), pp. 722–733.
  • J. Hinrichs, D. Felsmann, S. Schweitzer-De Bortoli, H.J. Tomczak, and H. Pitsch, Numerical and experimental investigation of pollutant formation and emissions in a full-scale cylindrical heating unit of a condensing gas boiler, Appl. Energy. 229 (2018), pp. 977–989.
  • R. Lamioni, C. Bronzoni, M. Folli, L. Tognotti, and C. Galletti, Feeding h2-admixtures to domestic condensing boilers: Numerical simulations of combustion and pollutant formation in multi-hole burners, Appl. Energy 309 (2022), p. 118379.
  • S. Lee, S.M. Kum, and C.E. Lee, An experimental study of a cylindrical multi-hole premixed burner for the development of a condensing gas boiler, Energy 36 (2011), pp. 4150–4157.
  • S.S. Rashwan, A.H. Ibrahim, T.W. Abou-Arab, M.A. Nemitallah, and M.A. Habib, Experimental study of atmospheric partially premixed oxy-combustion flames anchored over a perforated plate burner, Energy 122 (2017), pp. 159–167.
  • H. Soltanian, M.Z. Targhi, and H. Pasdarshahri, Chemiluminescence usage in finding optimum operating range of multi-hole burners, Energy 180 (2019), pp. 398–404.
  • Y. Ding, D. Durox, N. Darabiha, and T. Schuller, Chemiluminescence of burner-stabilized premixed laminar flames, Combustion Sci. Technol. 191 (2019), pp. 18–42.
  • Y. Ding, D. Durox, N. Darabiha, and T. Schuller, Chemiluminescence based operating point control of domestic gas boilers with variable natural gas composition, Appl. Therm. Eng. 149 (2019), pp. 1052–1060.
  • R.M. Mallens, B.O. Loijenga, L.P. De Goey, and P.J. Sonnemans, Numerical and experimental study of lean M- and V-shaped flames, Combustion Sci. Technol. 122 (1997), pp. 331–344.
  • R. Mallens, H. de Lange, C.v. de VEN, and L. De Goey, Modeling of confined and unconfined laminar premixed flames on slit and tube burners, Combustion Sci. Technol. 107 (1995), pp. 387–401.
  • R.M.M. Mallens and L.P.H.D. Goey, Flash-back of laminar premixed methane/air flames on slitand tube burners, Combustion Sci. Technol. 136 (1998), pp. 41–54.
  • S. Parmentier, M. Braack, U. Riedel, and J. Warnatz, Modeling of combustion in a lamella burner, Combustion Sci. Technol. 175 (2003), pp. 185–206.
  • V.N. Kornilov, R. Rook, J.H. ten Thije Boonkkamp, and L.P. de Goey, Experimental and numerical investigation of the acoustic response of multi-slit Bunsen burners, Combust. Flame. 156 (2009), pp. 1957–1970.
  • T. Steinbacher, A. Albayrak, A. Ghani, and W. Polifke, Consequences of flame geometry for the acoustic response of premixed flames, Combust. Flame. 199 (2019), pp. 411–428.
  • R. Bilger, S. Stårner, and R. Kee, On reduced mechanisms for methane-air combustion in nonpremixed flames, Combust. Flame. 80 (1990), pp. 135–149.
  • P. Cheng, Two-dimensional radiating gas flow by a moment method, AIAA J. 2 (1964), pp. 1662–1664.
  • R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer, Hemisphere Pub, Corp., Washington, DC, 1992.
  • T.F. Smith, Z.F. Shen, and J.N. Friedman, Evaluation of coefficients for the weighted sum of gray gases model, J. Heat. Transfer. 104 (1982), pp. 602–608.
  • A. Fluent, 12.0 User's Guide, Ansys Inc. 6, 2009.
  • G. De Soete, Overall reaction rates of no and n2 formation from fuel nitrogen, Symposium (International) on Combustion 15 (1975), pp. 1093–1102. Fifteenth Symposium (International) on Combustion.
  • P. Malte and D. Pratt, Measurement of atomic oxygen and nitrogen oxides in jet-stirred combustion, Symposium (International) on Combustion 15 (1975), pp. 1061–1070. Fifteenth Symposium (International) on Combustion.
  • M. Najarnikoo, M.Z. Targhi, and H. Pasdarshahri, Experimental study on the flame stability and color characterization of cylindrical premixed perforated burner of condensing boiler by image processing method, Energy 189 (2019), p. 116130.
  • A. Cuoci, A. Frassoldati, T. Faravelli, and E. Ranzi, Opensmoke++: An object-oriented framework for the numerical modeling of reactive systems with detailed kinetic mechanisms, Comput. Phys. Commun. 192 (2015), pp. 237–264.
  • T. Poinsot and D. Veynante, Theoretical and numerical combustion, RT Edwards, Inc., 2005.
  • I. Ansys, Cfd, ICEM CFD Theory Guide, Ansys Inc., 2015.
  • W. Francis and M.C. Peters, Data sheet no. 117 – fuel gas burners, in Fuels and Fuel Technology, 2nd ed., W. Francis and M.C. Peters, eds., Pergamon, 1980, pp. 399–405.
  • D.M. Valiev, V. Akkerman, M. Kuznetsov, L.E. Eriksson, C.K. Law, and V. Bychkov, Influence of gas compression on flame acceleration in the early stage of burning in tubes, Combust. Flame. 160 (2013), pp. 97–111.
  • H. de Vries, A.V. Mokhov, and H.B. Levinsky, The impact of natural gas/hydrogen mixtures on the performance of end-use equipment: Interchangeability analysis for domestic appliances, Appl. Energy. 208 (2017), pp. 1007–1019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.