274
Views
0
CrossRef citations to date
0
Altmetric
Articles

Reduced kinetic mechanism for methane/oxygen rocket engine applications: a reliable and numerically efficient methodology

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 391-417 | Received 10 Nov 2021, Accepted 07 Dec 2022, Published online: 30 Jan 2023

References

  • G.P. Sutton and O. Biblarz, Rocket Propulsion Elements, 8th ed. John Wiley & Sons, Inc., New York, 2011.
  • M. Mirshams, H. Naseh and H.R. Fazeley, Multi-objective multidisciplinary design of space launch system using holistic concurrent design. Aerosp. Sci. and Techol. 33(1) (2014), pp. 40.
  • A. de Lillis, M. Balduccini, and E. D’ Aversa, The LOX-Methane upper stage motor development for the Lyra launch vehicle, Proc. of the 58th International Astronautical Congress, Hyderabad, India, 2007.
  • A. Iannetti, N. Girard, D. Tchou-kien, C. Bonhomme, N. Ravier, and E. Edeline, and E. Prometheus, A LOx/LCH4 reusable rocket engine, EUCASS2017-537, 2017.
  • T. Tomita, S. Ueda, H. Kawashima, T. Onodera, Y. Kano, I. Kubota, and T. Munenaga, Status of experimental research on high performance methane-fueled rocket thrust chamber, Proc. of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 31 July - 03 August, San Diego, California, AIAA Paper, pp. 5935, 2011.
  • T. Markusic, SpaceX propulsion, In: Proc. of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 25-28, Nashville, USA, 2010.
  • F. Battista, D. Ricci, P. Natale, M. Ferraiuolo, D. Cardillo, and R. Borrelli, HYPROB-NEW: Recent developments of the LOX/LCH4 Research Line LOX/LCH4 RESEARCH LINE, Space Propulsion Conference 2020 + 1, SP2020_0160, 2021.
  • D. Ricci, P. Natale, F. Battista, and V. Salvatore, Experimental investigation on the transcritical behaviour of methane and numerical rebuilding activity in the frame of the HYPROB-BREAD project, Paper IMECE-2015-51625, 2015.
  • D. Ricci, P. Natale and F. Battista, Experimental and numerical investigation on the behaviour of methane in supercritical conditions. Appl. Therm. Eng 107 (2016), pp. 1334.
  • N. Zettervall, C. Fureby and E.J.K. Nilson, Evaluation of chemical kinetic mechanisms for methane combustion: A review from a CFD perspective. Fuels 2 (2021), pp. 210–240.
  • B. Fiorina, and M. Caillier, Accounting for complex chemistry in the simulation of future turbulent combustion systems, AIAA SciTech Forum, (2019), AIAA 2019-0995.
  • G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner, V.V. Lissianski Jr, and Z. Qin, GRI-Mech 3.0 [Online], 1999. Available at http://www.me.berkeley.edu/gri_mech/.
  • P. Natale, G. Saccone, A.D. French, and F. Battista. Chemical and CFD modelling of sub-scale bread-board igniter based on experimental data assessment, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 3851, 2015.
  • B.F. Magnussen, and B.H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, 16th Symp. (Int.) on Combustion. Combustion Institute, Pittsburgh, Pennyslvania, 719, 1976.
  • N. Bellomo, M. Lazzarin, and F. Barato, Numerical investigation of the effect of diaphragram on the performance of hybrid rocket motor, American Institute of Aeronautics and Astronautics. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2010.
  • A. Saylam, M. Ribaucour, W.J. Pitz and R. Minetti, Reduction of large detailed chemical kinetic mechanisms for autoignition using joint analyses of reaction rates and sensitivities. Int. J. Chem. Kinet 39 (2007), pp. 181.
  • S. Vajda, P. Valko and T. Turányi, Principal component analysis of kinetic models. Int J Chem Kinet 17 (1985), pp. 55.
  • T. Lu and C.K. Law, A directed relation graph method for mechanism reduction. Proc. Combust. Inst 30(1) (2005), pp. 1333.
  • X.L. Zheng, T. Lu, C.K. Law, C.K. Westbrook and H.J. Curran, Experimental and computational study of nonpremixed ignition of dimethyl ether in counterflow. Proc. Combust. Inst 30 (2005), pp. 1101.
  • T. Lu and C.K. Law, Linear time reduction of large kinetic mechanisms with directed relation graph: n-heptane and iso-octane. Combust Flame 144 (2006), pp. 24.
  • P. Pepiot and H. Pittsh, Systematic reduction of large chemical mechanisms, 4th Joint Meeting of the U.S. Section of the Combustion Institute, Drexel University, March 21-23, 2005.
  • A.S. Tomlin, M.J. Pilling, T. Turányi, J.H. Merkin and J. Brindley, Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasi-steady-state analyses. Combust Flame 91 (1992), pp. 107.
  • W. Wang and B. Rogg, Reduced Kinetics Mechanisms for Application in Combustion Systems, Lecture Notes in Physics M 15, Springer-Verlag, Berlin; New York, 1993.
  • S.H. Lam and D.A. Goussis, Understanding complex chemical kinetics with computational singular perturbation. Proc. Combust. Inst 22 (1988), pp. 931.
  • A.S. Tomlin, M.J. Pilling, J.H. Merkin, J. Brindley, N. Burgess and A. Gough, Reduced mechanisms for propane pyrolysis. Ind. Eng. Chem. Res 34 (1995), pp. 3749.
  • U. Maas and S. Pope, Simplifying chemical kinetics: intrinsic Low-dimensional manifolds in composition space. Combust Flame 88 (1992), pp. 239.
  • A. Larsson, N. Zettervall, T. Hurtig, E.J.K. Nilson, A. Ehn, P. Petersson, M. Alden, J. Larsfeldt and C. Fureby, Skeletal methane-air reaction mechanism for large eddy simulation of turbulent microwave-assisted combustion. Energy Fuels 31 (2017), pp. 1904–1926.
  • F. Battin-Leclerc, E. Blurock, R. Bounaceur, R. Fournet, P.-A. Glaude, O. Herbinet, B. Sirjean and V. Warth, Towards cleaner combustion engines through groundbreaking detailed chemical kinetic models. Chem Soc Rev 40(9) (2011), pp. 4762–4782.
  • T. Lu and C.K. Law, A criterion based on computational singular perturbation for the identification of quasi steady state species: A reduced mechanism for methane oxidation with NO chemistry. Combust Flame 154 (2008), pp. 761.
  • J. Zips, C. Traxinger, P. Breda and M. Pfitzner, Assessment of presumed/transported probability density function methods for rocket combustion simulations. J Propul Power 35(4) (2019), pp. 747.
  • P. Breda and M. Pfitzner, Delayed detached eddy simulations with tabulated chemistry for thermal loads predictions. J Propul Power 37(1) (2021), pp. 29.
  • R. Ranjan, A. Panchal, and S. Menon, On the effects of chemical kinetics and thermal conditions on the flow and flame features in a single-element GCH4/GOX Rocket Combustor, AIAA Paper 2016-4999, July 2016.
  • D. Maestro, B. Cuenot, L. Selle, G. Frank, M. Pfitzner, Y. Daimon, R. Keller, P. Gerlinger, A. Chemnitz, T. Sattelmayer, and O.J. Haidn, Numerical investigation of flow and combustion in a single element GCH4/GOX rocket combustor: Chemistry modeling and turbulence-combustion interaction, AIAA Paper 2016-4996, July 2016.
  • C. Roth, O.J. Haidn, A. Chemnitz, T. Sattelmayer, G. Frank, H. Müller, J. Zips, R. Keller, P. Gerlinger, D. Maestro, B. Cuenot, H. Riedmann, and L. Selle, Numerical investigation of flow and combustion in a single-element GCH4/GOX rocket combustor, AIAA Paper 2016-4995, July 2016.
  • P. Lapenna, R. Amaduzzi, D. Durigon, G. Indelicato, F. Nasuti, and F. Creta, Simulation of a single-element GCH4/GOX rocket combustor using a non-adiabatic flamelet method, AIAA Paper 2018-4872, July 2018.
  • A. Chemnitz, T. Sattelmayer, C. Roth, O.J. Haidn, Y. Daimon, R. Keller, P. Gerlinger, J. Zips and M. Pfitzner, Numerical investigation of reacting flow in a methane rocket combustor: turbulence modeling. J Propul Power 34(4) (2018), pp. 864–877.
  • H. Müller, J. Zips, M. Pfitzner, D. Maestro, B. Cuenot, S. Menon, R. Ranjan, P. Tudisco, and L. Selle, Numerical investigation of flow and combustion in a single-element GCH4/GOX rocket combustor: A comparative LES study, AIAA Paper 2016-4997, July 2016.
  • J. Zips, C. Traxinger and M. Pfitzner, Time-Resolved flow field and thermal loads in a single-element GOx/GCH4 rocket combustor. Int J Heat Mass Transfer 143 (2019), pp. 118474.
  • D. Maestro, B. Cuenot and L. Selle, Large eddy simulation of combustion and heat transfer in a single element GCH4/GOx rocket combustor. Flow, Turbul Combust 103(3) (2019), pp. 699–730.
  • D. Rahn, O.J. Haidn, H. Riedmann, and R. Behr, Non-adiabatic flamelet modeling for the numerical simulation of methane combustion in rocket thrust chambers, AIAA Paper 2018-4869, July 2018.
  • Y. Daimon, H. Negishi, S. Silvestri, and O.J. Haidn, Conjugated combustion and heat transfer simulation for a 7 element GOX/GCH4 rocket combustor, AIAA Paper 2018-4553, July 2018.
  • N. Perakis, D. Rahn, D. Eiringhaus and O.J. Haidn, Heat transfer and combustion simulation of a 7-Element GOX/GCH4 rocket combustor, AIAA Paper 2018-4554, July 2018.
  • N. Perakis, O.J. Haidn, D. Rahn, D. Eiringhaus, S. Zhang, Y. Daimon, S. Karl, and T. Horchler, Qualitative and quantitative comparison of RANS simulation results for a 7 element GOx-GCH4 rocket combustor, AIAA Paper 2018-4556, July 2018.
  • D. Rahn, O.J. Haidn, and H. Riedmann, Conjungate heat transfer simulation of a subscale rocket thrust chamber using a timescale based frozen non-adiabatic flamelet combustion model, AIAA Paper 2019-3864, July 2019.
  • J. Wei, M. Ye, S. Zhang, J. Qin and O.J. Haidn, Modeling of a 7-elements GOX/GCH4 combustion chamber using RANS with eddy-dissipation concept model. Aerosp Sci Technol 29 (2020), pp. 1–13.
  • J. Zips, C. Traxinger, P. Breda and M. Pfitzner, Assessment of presumed/transported probability density function methods for rocket combustion simulations. J Propul Power 35(4) (2019), pp. 747–764.
  • L. Cutrone, P. De Palma, G. Pascazio and M. Napolitano, A RANS flamelet-progress-variable method for computing reacting flows of real-gas mixture. Comput Fluids 39 (2010), pp. 485–498.
  • J. Zips, H. Müller and M. Pfitzner, Efficient thermo-chemistry tabulation for Non-premixed combustion at high-pressure conditions. Flow Turbulence Combust 101 (2018), pp. 821–850.
  • N. Guezennec, M. Masquelet, and S. Menon, Large eddy simulation of flame-turbulence interactions in a LOX-CH4 shear coaxial injector, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition: AIAA Paper 2012-1267 (2012).
  • T. Schmitt, Y. M´ery, M. Boileau and S. Candel, Large-eddy simulation of oxygen/methane flames under transcritical conditions. Proc Combust Inst 33 (2011), pp. 1383–1390.
  • H. Müller and M. Pfitzner, A flamelet model for transcritical LOx/GCH4 flame. J. Phys.: Conf. Ser 821(012010) (2017), pp. 1–10.
  • M. Celano, S. Silvestri, G. Schlieben, C. Kirchberger, O.J. Haidn and O. Knab, Injector characterization for a gaseous oxygen-methane single element combustion chamber. Progress in Propulsion Physics 8 (2016), pp. 145.
  • M. Shur, P. Spalart, M. Strelets and A. Travin, A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities. Int. J. Heat and Fluid Fl 29(6) (2008), pp. 1638.
  • R. Gran and B.F. Magnussen, A numerical study of a bluff-body stabilized diffusion flame. part 2. influence of combustion modeling and finite-rate chemistry. Combust. Sci. Technol 119(1-6) (1996), pp. 191.
  • D. Goodwin, H.K. Moffat, and R.L. Speth, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (2.6 version) [Online]; software. Available at http://www.cantera.org.
  • J. Revel, J.C. Boettner, M. Cathonnet and J.S. Bachman, Derivation Of A global chemical kinetic mechanism For methane ignition and combustion. J Chim Phys Phys-Chim Biol 91(4) (1994), pp. 365.
  • E.L. Petersen, D.F. Davidson and R.K. Hanson, Kinetics modeling of shock-induced ignition in Low-dilution CH4/O2 mixtures at high pressure and intermediate temperatures. Combust Flame 117 (1999), pp. 272.
  • V.P. Zhukov and A.F. Kong, Skeletal kinetic mechanism of methane oxidation for high pressures and temperatures, 7th European Conference for Aeronautics and Space Sciences (EUCASS), 3-6 July 2017, Milan (Italy), 2017.
  • T. Turány and A.S. Tomlin, Analysis of Kinetic Reaction Mechanisms, Springer Heidelberg, New York Dordrecht London, 2014.
  • H.E. Merhubi, A. Kéromnès, G. Catalano, B. Lefort and L.L. Moyne, A high pressure experimental and numerical study of methane ignition. Fuel 177 (2016), pp. 164–172.
  • NUI Galway Combustion Chemistry Centre. AramcoMech 2.0; 2017. http://www.nuigalway.ie/combustionchemistrycentre/mechanismdownloads/aramcomech20.
  • H. Wang, X. You, A.V. Joshi, S.G. Davis, A. Laskin, F. Egolfopoulos, and C.K. Law, USC Mech Version II. High-temperature combustion reaction model of H2/CO/C1-C4 compounds, 2007. Available at http://ignis.usc.edu/USC_Mech_II.htm.
  • V.P. Zhukov, Kinetic model of alkane oxidation at high pressure from methane to n-heptane. Combust. Theory Model 13(3) (2009), pp. 427.
  • D. Maestro, B. Cuenot, L. Selle, G. Frank, M. Pfitzner, Y. Daimon, R. Keller, P. Gerlinger, A. Chemnitz, T. Sattelmayer, and O.J. Haidn, Numerical investigation of flow and combustion in a single-element GCH4/GOX rocket combustor: Chemistry modelling and turbulence-combustion interaction, AIAA Paper 2016-4996, 2016.
  • N. Perakis and O.J. Haidn, Inverse heat transfer method applied to capacitively cooled rocket thrust chambers. Int. J. Heat Mass Tran 131 (2019), pp. 150.
  • M. Immer, Time-resolved measurement and simulation of local scale turbulent urban flow, Ph.D. diss., Eidgenössische Technische Hochschule Zürich, Zurich, 2016.
  • P. Breda, Reduced chemistry models for the numerical investigation of flow and heat transfer in methane combustion devices, PhD Thesis, Universität der Bunderswehr, Munich, 2021.
  • P. Spalart and S. Allmaras, A one-equation turbulence model for aerodynamic flows, AIAA Paper (1992), pp. 439.
  • N. Peters, Laminar diffusion Flamelet models in non-premixed turbulent combustion. Prog. Energ. Combust. 10(3) (1984), pp. 319.
  • P. Ma, H. Wu and M. Ihme, Nonadiabatic flamelet formulation for predicting wall heat transfer in rocket engines. AIAA J 56(6) (2018), pp. 2336.
  • A. Sternin, H. Ma, J. Liu, O.J. Haidn, and M. Tajmar, Turbulence and combustion and film prediction in rocket application via parameter adjusting, model variation and deep learning method, Sonderforschungsbereich/Transregio 40 – Summer Program Report, 2019.
  • T.H. Shih, W.W. Liou, A. Shabbir, Z. Yang and J. Zhu, A new k-ϵ eddy-viscosity model for high reynolds number turbulent flows – model development and validation. Comput Fluids 24(3) (1995.
  • F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32(8) (1994), pp. 1598.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.